RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.1
Question 1.
Evaluate each of the following using identities:
(i) (2x –\(\frac { 1 }{ x }\))
2
(ii) (2x + y) (2x – y)
(iii) (a
2
b – b
2
a)
2
(iv) (a – 0.1) (a + 0.1)
(v) (1.5.x
2
– 0.3y
2
) (1.5x
2
+ 0.3y
2
)
Solution:
Question 2.
Evaluate each of the following using identities:
(i) (399)
2
(ii) (0.98)
2
(iii) 991 x 1009
(iv) 117 x 83
Solution:
Question 3.
Simplify each of the following:
Solution:
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
If 9x
2
+ 25y
2
= 181 and xy = -6, find the value of 3x + 5y.
Solution:
9x
2
+ 25y
2
= 181, and xy = -6
(3x + 5y)
2
= (3x)
2
+ (5y)
2
+ 2 x 3x + 5y
⇒ 9X
2
+ 25y
2
+ 30xy
= 181 + 30 x (-6)
= 181 – 180 = 1
= (±1 )
2
∴ 3x + 5y = ±1
Question 8.
If 2x + 3y = 8 and xy = 2, find the value of 4X
2
+ 9y
2
.
Solution:
2x + 3y = 8 and xy = 2
Now, (2x + 3y)
2
= (2x)
2
+ (3y)
2
+ 2 x 2x x 3y
⇒ (8)
2
= 4x
2
+ 9y
2
+ 12xy
⇒ 64 = 4X
2
+ 9y
2
+ 12 x 2
⇒ 64 = 4x
2
+ 9y
2
+ 24
⇒ 4x
2
+ 9y
2
= 64 – 24 = 40
∴ 4x
2
+ 9y
2
= 40
Question 9.
If 3x -7y = 10 and xy = -1, find the value of 9x
2
+ 49y
2
Solution:
3x – 7y = 10, xy = -1
3x -7y= 10
Squaring both sides,
(3x – 7y)
2
= (10)
2
⇒ (3x)
2
+ (7y)
2
– 2 x 3x x 7y = 100
⇒ 9X
2
+ 49y
2
– 42xy = 100
⇒ 9x
2
+ 49y
2
– 42(-l) = 100
⇒ 9x
2
+ 49y
2
+ 42 = 100
∴ 9x
2
+ 49y
2
= 100 – 42 = 58
Question 10.
Simplify each of the following products:
Solution:
Question 11.
Solution:
Question 12.
Solution:
Question 13.
Simplify each of the following products:
Solution:
Question 14.
Prove that a
2
+ b
2
+ c
2
– ab – bc – ca is always non-negative for all values of a, b and c.
Solution:
∵ The given expression is sum of these squares
∴ Its value is always positive Hence the given expression is always non-negative for all values of a, b and c
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.2
Question 1.
Write the following in the expanded form:
Solution:
Question 2.
If a + b + c = 0 and a
2
+ b
2
+ c
2
= 16, find the value of ab + be + ca.
Solution:
a + b+ c = 0
Squaring both sides,
(a + b + c)
2
= 0
⇒ a
2
+ b
2
+ c
2
+ 2(ab + bc + ca) = 0
16 + 2(ab + bc + c)
=
0
⇒ 2(ab + bc + ca) = -16
⇒ ab + bc + ca =-\(\frac { 16 }{ 2 }\) = -8
∴ ab + bc + ca = -8
Question 3.
If a
2
+ b
2
+ c
2
= 16 and ab + bc + ca = 10, find the value of a + b + c.
Solution:
(a + b + c)
2
= a
2
+ b
2
+ c
2
+ 2(ab + bc + ca)
= 16 + 2 x 10
= 16 + 20 = 36
= (±6)
2
∴ a
+
b
+
c
= ±6
Question 4.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a
2
+ b
2
+ c
2
.
Solution:
(a
+
b
+
c)
2
= a
2
+ b
2
+ c
2
+ 2(ab + bc + ca)
⇒ (9)
2
=
a
2
+
b
2
+ c
2
+ 2
x 23
⇒
81= a
2
+ b
2
+ c
2
+ 46
⇒
a
2
+
b
2
+ c
2
= 81 – 46 = 35
∴
a
2
+
b
2
+
c
2
= 35
Question 5.
Find the value of 4x
2
+ y
2
+ 25z
2
+ 4xy – 10yz – 20zx when x = 4, y = 3 and z = 2.
Solution:
x = 4, y – 3, z = 2
⇒
4x
2
+ y
2
+ 25z
2
+ 4xy – 10yz – 20zx
= (2x)
2
+ (y)
2
+ (5z)
2
+ 2 x2 x x y-2 x y x 5z – 2 x 5z x 2x
= (2x + y- 5z)
2
= (2 x 4 + 3- 5 x 2)
2
= (8 + 3- 10)
2
= (11 – 10)
2
= (1)
2
= 1
Question 6.
Simplify:
(i) (a + b + c)
2
+ (a – b + c)
2
(ii) (a + b + c)
2
– (a – b + c)
2
(iii) (a + b + c)
2
+ (a – b + c)
2
+ (a + b – c)
2
(iv) (2x + p – c)
2
– (2x – p + c)
2
(v) (x
2
+ y
2
– z
2
)
2
– (x
2
– y
2
+ z
2
)
2
Solution:
Question 7.
Simplify each of the following expressions:
Solution:
Class 9 RD Sharma Solutions Chapter 4 Algebraic Identities Ex 4.3
Question 1.
Find the cube of each of the following binomial expressions:
Solution:
Question 2.
If a + b = 10 and ab = 21, find the value of a
3
+ b
3
.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)
3
= (10)
3
⇒ a
3
+ 6
3
+ 3ab (a + b) = 1000
⇒ a
3
+ b
3
+ 3 x 21 x 10 = 1000
⇒ a
3
+ b
3
+ 630 = 1000
⇒ a
3
+ b
3
= 1000 – 630 = 370
∴ a
3
+ b
3
= 370
Question 3.
If a – b = 4 and ab = 21, find the value of a
3
-b
3
.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)
3
= (4)
3
⇒ a
3
– b
3
– 3ab (a – b) = 64
⇒ a
3
-i
3
-3×21 x4 = 64
⇒ a
3
– 6
3
– 252 = 64
⇒ a
3
– 6
3
= 64 + 252 =316
∴ a
3
– b
3
= 316
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Question 8.
Solution:
Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x
3
+ 21y
3
.
Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)
3
= (13)
3
⇒ (2x)
3
+ (3y)
3
+ 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x
3
+ 27y
3
+ 18xy(2x + 3y) = 2197
⇒ 8x
3
+ 27y
3
+ 18 x 6 x 13 = 2197
⇒ 8X
3
+ 27y
3
+ 1404 = 2197
⇒ 8x
3
+ 27y
3
= 2197 – 1404 = 793
∴ 8x
3
+ 27y
3
= 793
Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x
3
– 8y
3
.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)
3
= (11)
3
⇒ (3x)
3
– (2y)
3
– 3 x 3x x 2y(3x – 2y) =1331
⇒ 27x
3
– 8y
3
– 18xy(3x -2y) =1331
⇒ 27x
3
– 8y
3
– 18 x 12 x 11 = 1331
⇒ 27x
3
– 8y
3
– 2376 = 1331
⇒ 27X
3
– 8y
3
= 1331 + 2376 = 3707
∴ 2x
3
– 8y
3
= 3707
Question 11.
Evaluate each of the following:
(i) (103)
3
(ii) (98)
3
(iii) (9.9)
3
(iv) (10.4)
3
(v) (598)
3
(vi) (99)
3
Solution:
We know that (a + bf = a
3
+ b
3
+ 3ab(a + b) and (a – b)
3
= a
3
– b
3
– 3 ab(a – b)
Therefore,
(i) (103)
3
= (100 + 3)
3
= (100)
3
+ (3)
3
+ 3 x 100 x 3(100 + 3) {∵ (a + b)
3
= a
3
+ b
3
+ 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)
3
= (100 – 2)
3
= (100)
3
– (2)
3
– 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)
3
= (10 – 0.1)
3
= (10)
3
– (0.1)
3
– 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)
3
= (10 + 0.4)
3
= (10)
3
+ (0.4)
3
+ 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)
3
= (600 – 2)
3
= (600)
3
– (2)
3
– 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)
3
= (100 – 1)
3
= (100)
3
– (1)
3
– 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299
Question 12.
Evaluate each of the following:
(i) 111
3
– 89
3
(ii) 46
3
+ 34
3
(iii) 104
3
+ 96
3
(iv) 93
3
– 107
3
Solution:
We know that a
3
+ b
3
= (a + bf – 3ab(a + b) and a
3
– b
3
= (a – bf + 3 ab(a – b)
(i) 111
3
– 89
3
= (111 – 89)
3
+ 3 x ill x 89(111 – 89)
= (22)
3
+ 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)
3
– (a – b)
3
= 2(b
3
+ 3a
2
b)
= 111
3
– 89
3
= (100 + 11)
3
– (100 – 11)
3
= 2(11
3
+ 3 x 100
2
x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)
3
+ (a- b)
3
= 2(b
3
+ 3ab
2
)
(ii) 46
3
+ 34
3
= (40 + 6)
3
+ (40 – 6)
3
= 2[(40)
3
+ 3 x 40 x 6
2
]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 104
3
+ 96
3
= (100 + 4)
3
+ (100 – 96)
3
= 2 [a
3
+ 3 ab
2
]
= 2[(100)
3
+ 3 x 100 x (4)
2
]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 93
3
– 107
3
= -[(107)
3
– (93)
3
]
= -[(100 + If – (100 – 7)
3
]
= -2[b
3
+ 3a
2
b)]
= -2[(7)
3
+ 3(100)
2
x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686
Question 13.
Solution:
Question 14.
Find the value of 27X
3
+ 8y
3
if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = \(\frac { 14 }{ 9 }\)
Solution:
Question 15.
Find the value of 64x
3
– 125z
3
, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)
3
= (16)
3
⇒ (4x)
3
– (5y)
3
– 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x
3
– 125z
3
– 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒ 64x
3
– 125z
3
– 60 x 12 x 16 = 4096
⇒ 64x
3
– 125z
3
– 11520 = 4096
⇒ 64x
3
– 125z
3
= 4096 + 11520 = 15616
Question 16.
Solution:
Question 17.
Simplify each of the following:
Solution:
Question 18.
Solution:
Question 19.
Solution:
RD Sharma Mathematics Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4
Question 1.
Find the following products:
(i) (3x + 2y) (9X
2
– 6xy + Ay
2
)
(ii) (4x – 5y) (16x
2
+ 20xy + 25y
2
)
(iii) (7p
4
+ q) (49p
8
– 7p
4
q + q
2
)
Solution:
Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
Solution:
Question 3.
If a + b = 10 and ab = 16, find the value of a
2
– ab + b
2
and a
2
+ ab + b
2
.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)
2
= (10)
2
⇒ a
2
+ b
2
+ lab = 100
⇒ a
2
+ b
2
+ 2 x 16 = 100
⇒ a
2
+ b
2
+ 32 = 100
∴ a
2
+ b
2
= 100 – 32 = 68
Now, a
2
– ab + b
2
= a
2
+ b
2
– ab = 68 – 16 = 52
and a
2
+ ab + b
2
= a
2
+ b
2
+ ab = 68 + 16 = 84
Question 4.
If a + b = 8 and ab = 6, find the value of a
3
+ b
3
.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)
3
= (8)3
⇒ a
3
+ b
3
+ 3 ab{a + b) = 512
⇒ a
3
+ b
3
+ 3 x 6 x 8 = 512
⇒ a
3
+ b
3
+ 144 = 512
⇒ a
3
+ b
3
= 512 – 144 = 368
∴ a
3
+ b
3
= 368
Question 5.
If a – b = 6 and ab = 20, find the value of a
3
-b
3
.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)
3
⇒ a
3
– b
3
– 3ab(a – b) = 216
⇒ a
3
– b
3
– 3 x 20 x 6 = 216
⇒ a
3
– b
3
– 360 = 216
⇒ a
3
-b
3
= 216 + 360 = 576
∴ a
3
– b
3
= 576
Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
Solution:
RD Sharma Solutions Class 9 Chapter 4 Algebraic Identities Ex 4.5
Question 1.
Find the following products:
(i) (3x + 2y + 2z) (9x
2
+ 4y
2
+ 4z
2
– 6xy – 4yz – 6zx)
(ii) (4x -3y + 2z) (16x
2
+ 9y
2
+ 4z
2
+ 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a
2
+ 9b
2
+ 4c
2
+ 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x
2
+ 16y
2
+ 25z
2
+ 12xy- 15zx + 20yz)
Solution:
(i) (3x + 2y + 2z) (9x
2
+ 4y
2
+ 4z
2
– 6xy – 4yz – 6zx)
= (3x + 2y + 2z) [(3x)
2
+ (2y)
2
+ (2z)
2
– 3x x 2y + 2y x 2z + 2z x 3x]
= (3x)
3
+ (2y)
3
+ (2z)
3
– 3 x 3x x 2y x 2z
= 27x
3
+ 8y
3
+ 8Z
3
– 36xyz
(ii) (4x – 3y + 2z) (16x
2
+ 9y
2
+ 4z
2
+ 12xy + 6yz – 8zx)
= (4x -3y + 2z) [(4x)
2
+ (-3y)
2
+ (2z)
2
– 4x x (-3y + (3y) x (2z) – (2z x 4x)]
= (4x)
3
+ (-3y)
3
+ (2z)
3
– 3 x 4x x (-3y) x (2z)
= 64x
3
– 27y
3
+ 8z
3
+ 72xyz
(iii) (2a -3b- 2c) (4a
2
+ 9b
2
+ 4c
2
+ 6ab – 6bc + 4ca)
= (2a -3b- 2c) [(2a)
2
+ (3b)
2
+ (2c)
2
– 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
= (2a)
3
+ (3b)
3
+ (-2c)
3
-3x 2a x (-3 b) (-2c)
= 8a
3
– 21b
3
-8c
3
– 36abc
(iv) (3x – 4y + 5z) (9x
2
+ 16y
2
+ 25z
2
+ 12xy – 15zx + 20yz)
= [3x + (-4y) + 5z] [(3x)
2
+ (-4y)
2
+ (5z)
2
– 3x x (-4y) -(-4y) (5z) – 5z x 3x]
= (3x)
3
+ (-4y)
3
+ (5z)
3
– 3 x 3x x (-4y) (5z)
= 27x
3
– 64y
3
+ 125z
3
+ 180xyz
Question 2.
Evaluate:
Solution:
Question 3.
If x + y + z = 8 and xy + yz+ zx = 20, find the value of x
3
+ y
3
+ z
3
– 3xyz.
Solution:
We know that
x
3
+ y
3
+ z
3
– 3xyz = (x + y + z) (x
2
+ y
2
+ z
2
-xy -yz – zx)
Now, x + y + z = 8
Squaring, we get
(x + y + z)
2
= (8)
2
x
2
+ y
2
+ z
2
+ 2(xy + yz + zx) = 64
⇒ x
2
+ y
2
+ z
2
+ 2 x 20 = 64
⇒ x
2
+ y
2
+ z
2
+ 40 = 64
⇒ x
2
+ y
2
+ z
2
= 64 – 40 = 24
Now,
x
3
+ y
3
+ z
3
– 3xyz = (x + y + z) [x
2
+ y
2
+ z
2
– (xy + yz + zx)]
= 8(24 – 20) = 8 x 4 = 32
Question 4.
If a +b + c = 9 and ab + bc + ca = 26, find the value of a
3
+ b
3
+ c
3
– 3abc.
Solution:
a + b + c = 9, ab + be + ca = 26
Squaring, we get
(a + b + c)
2
= (9)
2
a
2
+ b
2
+ c
2
+ 2 (ab + be + ca) = 81
⇒ a
2
+ b
2
+ c
2
+ 2 x 26 = 81
⇒ a
2
+ b
2
+ c
2
+ 52 = 81
∴ a
2
+ b
2
+ c
2
= 81 – 52 = 29
Now, a
3
+ b
3
+ c
3
– 3abc = (a + b + c) [(a
2
+ b
2
+ c
2
– (ab + bc + ca)]
= 9[29 – 26]
= 9 x 3 = 27
Question 5.
If a + b + c = 9, and a
2
+ b
2
+ c
2
= 35, find the value of a
3
+ b
3
+ c
3
– 3abc.
Solution:
a + b + c = 9
Squaring, we get
(a + b + c)
2
= (9)
2
⇒ a
2
+ b
2
+ c
2
+ 2 (ab + be + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
2(ab + bc + ca) = 81 – 35 = 46
∴ ab + bc + ca = \(\frac { 46 }{ 2 }\) = 23
Now, a
3
+ b
3
+ c
3
– 3abc
= (a + b + c) [a
2
+ b
2
+ c
2
– (ab + bc + ca)]
= 9[35 – 23] = 9 x 12 = 108
Class 9 Maths Chapter 4 Algebraic Identities RD Sharma Solutions VSAQS
Question 1.
Solution:
Question 2.
Solution:
Question 3.
If a + b = 7 and ab = 12, find the value of a
2
+ b
2
.
Solution:
a + b = 7, ab = 12
Squaring both sides,
(a + b)
2
= (7)
2
⇒ a
2
+ b
2
+ 2ab = 49
⇒ a
2
+ b
2
+ 2 x 12 = 49
⇒ a
2
+ b
2
+ 24 = 49
⇒ a
2
+ b
2
= 49 – 24 = 25
∴ a
2
+ b
2
= 25
Question 4.
If a – b = 5 and ab = 12, find the value of a
2
+ b
2
.
Solution:
a – b = 5, ab = 12
Squaring both sides,
⇒ (a – b)
2
= (5)
2
⇒ a
2
+ b
2
– 2ab = 25
⇒ a
2
+ b
2
– 2 x 12 = 25
⇒ a
2
+ b
2
– 24 = 25
⇒ a
2
+ b
2
= 25 + 24 = 49
∴ a
2
+ b
2
= 49
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Algebraic Identities Class 9 RD Sharma Solutions MCQS
Question 1.
Solution:
Question 2.
Solution:
Question 3.
Solution:
Question 4.
Solution:
Question 5.
Solution:
Question 6.
Solution:
Question 7.
Solution:
Question 8.
If a + b + c = 9 and ab + bc + ca = 23, then a
2
+ b
2
+ c
2
=
(a) 35
(b) 58
(c) 127
(d) none of these
Solution:
a + b + c = 9, ab + bc + ca = 23
Squaring,
(a + b+ c) = (9)
2
a
2
+ b
2
+ c
2
+ 2 (ab + bc + ca) = 81
⇒ a
2
+ b
2
+ c
2
+ 2 x 23 = 81
⇒ a
2
+ b
2
+ c
2
+ 46 = 81
⇒ a
2
+ b
2
+ c
2
= 81 – 46 = 35 (a)
Question 9.
(a – b)
3
+ (b – c)
3
+ (c – a)
3
=
(a) (a + b + c) (a
2
+ b
2
+ c
2
– ab – bc – ca)
(d) (a -b)(b- c) (c – a)
(c) 3(a – b) (b – c) (c – a)
(d) none of these
Solution:
(a – b)
3
+ (b- c)
3
+ (c- a)
3
∵ a – b + b – c + c – a =
0
∴ (a
–
b)
3
+ (b – c)
3
+ (c – a)
3
= 3
(a -b)(b- c) (c – a) (c)
Question 10.
Solution:
Question 11.
If a – b = -8 and ab = -12 then a
3
– b
3
=
(a) -244
(b) -240
(c) -224
(d) -260
Solution:
a – b = -8, ab = -12
(a – b)
3
= a
3
– b
3
– 3ab (a – b)
(-8)
3
= a
3
– b
3
– 3 x (-12) (-8)
-512 = a
3
-b
3
– 288
a
3
– b
3
= -512 + 288 = -224 (c)
Question 12.
If the volume of a cuboid is 3x
2
– 27, then its possible dimensions are
(a) 3, x
2
, -27x
(b) 3, x – 3, x + 3
(c) 3, x
2
, 27x
(d) 3, 3, 3
Solution:
Volume = 3x
2
-27 = 3(x
2
– 9)
= 3(x + 3) (x – 3)
∴ Dimensions are = 3, x – 3, x + 3 (b)
Question 13.
75 x 75 + 2 x 75 x 25 + 25 x 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Solution:
Question 14.
(x – y) (x + y)(x
2
+ y
2
) (x
4
+ y
4
) is equal to
(a) x
16
– y
16
(b) x
8
– y
8
(c) x
8
+ y
8
(d) x
16
+ y
16
Solution:
Question 15.
Solution:
Question 16.
Solution:
Question 17.
Solution:
Question 18.
Solution:
Question 19.
If a
2
+ b
2
+ c
2
– ab – bc – ca = 0, then
(a) a + b = c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Solution:
a
2
+ b
2
+ c
2
– ab – bc – ca = 0
2 {a
2
+ b
2
+ c
2
– ab – be – ca) = 0 (Multiplying by 2)
⇒ 2a
2
+ 2b
2
+ 2c
2
– 2ab – 2bc – 2ca = 0
⇒ a
2
+ b
2
– 2ab + b
2
+ c
2
– 2bc + c
2
+ a
2
– 2ca = 0
⇒ (a – b)
2
+ (b – c)
2
+ (c – a)
2
= 0
(a – b)
2
= 0, then a – b = 0
⇒ a = b
Similarly, (b – c)
2
= 0, then
b-c = 0
⇒ b = c
and (c – a)
2
= 0, then c-a = 0
⇒ c = a
∴ a = b – c (d)
Question 20.
Solution:
Question 21.
Solution:
Question 22.
If a + b + c = 9 and ab + bc + ca = 23, then a
3
+ b
3
+ c
3
– 3 abc =
(a) 108
(b) 207
(c) 669
(d) 729
Solution:
a
3
+ b
3
+ c
3
– 3abc
= (a + b + c) [a
2
+ b
2
+ c
2
– (ab + bc + ca)
Now, a + b + c = 9
Squaring,
a
2
+ b
2
+ c
2
+ 2 (ab + be + ca) = 81
⇒ a
2
+ b
2
+ c
2
+ 2 x 23 = 81
⇒ a
2
+ b
2
+ c
2
+ 46 = 81
⇒ a
2
+ b
2
+ c
2
= 81 – 46 = 35
Now, a
3
+ b
3
+ c
3
– 3 abc = (a + b + c) [(a
2
+ b
2
+ c
2
) – (ab + bc + ca)
= 9[35 -23] = 9 x 12= 108 (a)
Question 23.
Solution:
Question 24.
The product (a + b) (a – b) (a
2
– ab + b
2
) (a
2
+ ab + b
2
) is equal to
(a) a
6
+ b
6
(b) a
6
– b
6
(c) a
3
– b
3
(d) a
3
+ b
3
Solution:
(a + b) (a – b) (a
2
– ab + b
2
) (a
2
+ ab +b
2
)
= (a + b) (a
2
-ab + b
2
) (a-b) (a
2
+ ab + b
2
)
= (a
3
+ b
3
) (a
3
– b
3
)
= (a
3
)
2
– (b
3
)
2
= a
6
– b
6
(b)
Question 25.
The product (x
2
– 1) (x
4
+ x
2
+ 1) is equal to
(a) x
8
– 1
(b) x
8
+ 1
(c) x
6
– 1
(d) x
6
+ 1
Solution:
(x
2
– 1) (x
4
+ x
2
+ 1)
= (x
2
)
3
– (1)
3
= x
6
– 1 (c)
Question 26.
Solution:
Question 27.
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities
-
RD Sharma Class 9th Solutions Chapter 4 Algebraic Identities Exercise 4.1
RD Sharma Class 9th Solutions Chapter 4 Algebraic Identities Exercise 4.2
RD Sharma Class 9th Solutions Chapter 4 Algebraic Identities Exercise 4.3 - RD Sharma Class 9th Solutions Chapter 4 Algebraic Identities Exercise 4.4
- RD Sharma Class 9th Solutions Chapter 4 Algebraic Identities Exercise 4.5