RD Sharma Class 10 Solutions Chapter 5 Trigonometric Ratios Ex 5.2
RD Sharma Class 10 Solutions Trigonometric Ratios Exercise 5.2
Evaluate each of the following (1-19) : 1.
Question 1.
sin45° sin30° + cos45° cos30°.
Solution:
sin 45° sin 30° + cos 45° cos 30°
Question 2.
sin60° cos30° + cos60° sin30°.
Solution:
Question 3.
cos60° cos45° – sin60° sin45°.
Solution:
Question 4.
sin
2
30° + sin
2
45° + sin
2
60° + sin
2
290°.
Solution:
Question 5.
cos
2
30° + cos
2
45° + cos
2
60° + cos
2
90°.
Solution:
Question 6.
tan
2
30° + tan
2
60° + tan
2
45°.
Solution:
Question 7.
2sin
2
30° – 3cos
2
45° + tan
2
60°.
Solution:
Question 8.
sin
2
30°cos
2
4S° + 4tan
2
30° + \(\frac { 1 }{ 2 }\) sin
2
90° -2cos
2
90° + \(\frac { 1 }{ 24 }\) cos20°.
Solution:
Question 9.
4 (sin
4
60° + cos
4
30°) – 3 (tan
2
60° – tan
2
45°) + 5cos
2
45°
Solution:
Question 10.
(cosecc
2
45° sec
2
30°) (sin
2
30° + 4cot
2
45° – sec
2
60°).
Solution:
Question 11.
cosec
3
30° cos 60° tan
3
45° sin2 90° sec
2
45° cot 30°.
Solution:
Question 12.
cot
2
30° – 2cocs
2
60° – \(\frac { 3 }{ 4 }\)sec2 45° – 4sec
2
30°.
Solution:
Question 13.
(cos0° + sin45° + sin30°) (sin90° – cos45° + cos60°)
Solution:
Question 14.
Solution:
Question 15.
Solution:
Question 16.
4 (sin
4
30° + cos
2
60°) – 3 (cos
2
45° – sin
2
90°) – sin
2
60°
Solution:
Question 17.
Solution:
Question 18.
Solution:
Question 19.
Solution:
Find the value of x in each of the following : (20-25)
Question 20.
2sin 3x = √3
Solution:
Question 21.
2sin \(\frac { x }{ 2 }\) = 1
Solution:
Question 22.
√3 sin x=cos x
Solution:
Question 23.
tan x = sin 45° cos 45° + sin 30°
Solution:
Question 24.
√3 tan 2x = cos 60° +sin 45° cos 45°
Solution:
Question 25.
cos 2x = cos 60° cos 30° + sin 60° sin 30°
Solution:
Question 26.
If θ = 30°, verify that :
Solution:
Question 27.
If A = B = 60°, verify that:
(i) cos (A – B) = cos A cos B + sin A sin B
(ii) sin (A – B) = sin A cos B – cos A sin B tan A – tan B
(iii) tan (A – B) = \(\frac { tanA-tanB }{ 1+tanA-tanB }\)
Solution:
Question 28.
If A = 30° and B = 60°, verify that :
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B – sin A sin B
Solution:
Question 29.
If sin (A + B) = 1 and cos (A,-B) = 1,0° < A + B < 90°, A > B find A and B.
Solution:
Question 30.
Solution:
Question 31.
Solution:
Question 32.
In a ∆ABC right angle at B, ∠A = ∠C. Find the values of
(i) sin A cos C + cos A sin C
(ii) sin A sin B + cos A cos B
Solution:
Question 33.
Find acute angles A and B, if sin (A + 2B)=\(\frac { \sqrt { 3 } }{ 2 }\) and cos (A + 4B) = 0, A > B.
Solution:
Question 34.
In ΔPQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
Solution:
Question 35.
If sin (A – B) = sin A cos B – cos A sin B and cos (A – B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
Solution:
Question 36.
In a right triangle ABC, right angled at ∠C if ∠B = 60° and AB – 15 units. Find the remaining angles and sides.
Solution:
Question 37.
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC = 7 units. Find ∠B, AB and AC.
Solution:
Question 38.
In a rectangle ABCD, AB = 20 cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Solution:
Question 39.
If A and B are acute angles such that
Solution:
Question 40.
Prove that (√3 + 1) (3 – cot 30°) = tan
3
60° – 2sin 60°. [NCERT Exemplar]
Solution:
RD Sharma Class 10 Solutions Chapter 5 Trigonometric Ratios Ex 5.2