NCERT Solutions for Class 8 Maths Chapter 14 Factorisation Ex 14.2
- Class 8 Maths Factorisation Exercise 14.1
- Class 8 Maths Factorisation Exercise 14.2
- Class 8 Maths Factorisation Exercise 14.3
- Factorisation Class 8 Extra Questions
NCERT Solutions for Class 8 Maths Chapter 14 Factorisation Exercise 14.2
Ex 14.2 Class 8 Maths Question 1.
Factorise the following expressions.
(i) a
2
+ 8a +16
(ii) p
2
– 10p + 25
(iii) 25m
2
+ 30m + 9
(iv) 49y
2
+ 84yz + 36z
2
(v) 4x
2
– 8x + 4
(vi) 121b
2
– 88bc + 16c
2
(vii) (l + m)
2
– 4lm. (Hint: Expand (l + m)
2
first)
(viii) a
4
+ 2a
2
b
2
+ b
4
Solution:
(i) a
2
+ 8a + 16
Here, 4 + 4 = 8 and 4 × 4 = 16
a
2
+ 8a +16
= a
2
+ 4a + 4a + 4 × 4
= (a
2
+ 4a) + (4a + 16)
= a(a + 4) + 4(a + 4)
= (a + 4) (a + 4)
= (a + 4)
2
(ii) p
2
– 10p + 25
Here, 5 + 5 = 10 and 5 × 5 = 25
p
2
– 10p + 25
= p
2
– 5p – 5p + 5 × 5
= (p
2
– 5p) + (-5p + 25)
= p(p – 5) – 5(p – 5)
= (p – 5) (p – 5)
= (p – 5)
2
(iii) 25m
2
+ 30m + 9
Here, 15 + 15 = 30 and 15 × 15 = 25 × 9 = 225
25m
2
+ 30m + 9
= 25m
2
+ 15m + 15m + 9
= (25m
2
+ 15m) + (15m + 9)
= 5m(5m + 3) + 3(5m + 3)
= (5m + 3) (5m + 3)
= (5m + 3)
2
(iv) 49y
2
+ 84yz + 36z
2
Here, 42 + 42 = 84 and 42 × 42 = 49 × 36 = 1764
49y
2
+ 84yz + 36z
2
= 49y
2
+ 42yz + 42yz + 36z
2
= 7y(7y + 6z) +6z(7y + 6z)
= (7y + 6z) (7y + 6z)
= (7y + 6z)
2
(v) 4x
2
– 8x + 4
= 4(x
2
– 2x + 1) [Taking 4 common]
= 4(x
2
– x – x + 1)
= 4[x(x – 1) -1(x – 1)]
= 4(x – 1)(x – 1)
= 4(x – 1)
2
(vi) 121b
2
– 88bc + 16c
2
Here, 44 + 44 = 88 and 44 × 44 = 121 × 16 = 1936
121b
2
– 88bc + 16c
2
= 121b
2
– 44bc – 44bc + 16c
2
= 11b(11b – 4c) – 4c(11b – 4c)
= (11b – 4c) (11b – 4c)
= (11b – 4c)
2
(vii) (l + m)
2
– 4lm
Expanding (l + m)
2
, we get
l
2
+ 2lm + m
2
– 4lm
= l
2
– 2lm + m
2
= l
2
– Im – lm + m
2
= l(l – m) – m(l – m)
= (l – m) (l – m)
= (l – m)
2
(viii) a
4
+ 2a
2
b
2
+ b
4
= a
4
+ a
2
b
2
+ a
2
b
2
+ b
4
= a
2
(a
2
+ b
2
) + b
2
(a
2
+ b
2
)
= (a
2
+ b
2
)(a
2
+ b
2
)
= (a
2
+ b
2
)
2
Ex 14.2 Class 8 Maths Question 2.
Factorise.
(i) 4p
2
– 9q
2
(ii) 63a
2
– 112b
2
(iii) 49x
2
– 36
(iv) 16x
5
– 144x
3
(v) (l + m)
2
– (l – m)
2
(vi) 9x
2
y
2
– 16
(vii) (x
2
– 2xy + y
2
) – z
2
(viii) 25a
2
– 4b
2
+ 28bc – 49c
2
Solution:
(i) 4p
2
– 9q
2
= (2p)
2
– (3q)
2
= (2p – 3q) (2p + 3q)
[∵ a
2
– b
2
= (a + b)(a – b)]
(ii) 63a
2
– 112b
2
= 7(9a
2
– 16b
2
)
= 7 [(3a)
2
– (4b)
2
]
= 7(3a – 4b)(3a + 4b)
[∵ a
2
– b
2
= (a + b)(a – b)]
(iii) 49x
2
– 36 = (7x)
2
– (6)
2
= (7x – 6) (7x + 6)
[∵ a
2
– b
2
= (a + b)(a – b)]
(iv) 16x
5
– 144x
3
= 16x
3
(x
2
– 9)
= 16x
3
[(x)
2
– (3)
2
]
= 16x
3
(x – 3)(x + 3)
[∵ a
2
– b
2
= (a + b)(a – b)]
(v) (l + m)
2
– (l – m)
2
= (l + m) – (l – m)] [(l + m) + (l – m)]
[∵ a
2
– b
2
= (a + b)(a – b)]
= (l + m – l + m)(l + m + l – m)
= (2m) (2l)
= 4ml
(vi) 9x
2
y
2
– 16 = (3xy)
2
– (4)
2
= (3xy – 4)(3xy + 4)
[∵ a
2
– b
2
= (a + b)(a – b)]
(vii) (x
2
– 2xy + y
2
) – z
2
= (x – y)
2
– z
2
= (x – y – z) (x – y + z)
[∵ a
2
– b
2
= (a + b)(a – b)]
(viii) 25a
2
– 4b
2
+ 28bc – 49c
2
= 25a
2
– (4b
2
– 28bc + 49c
2
)
= (5a)
2
– (2b – 7c)
2
= [5a – (2b – 7c)] [5a + (2b – 7c)]
= (5a – 2b + 7c)(5a + 2b – 7c)
Ex 14.2 Class 8 Maths Question 3.
Factorise the expressions.
(i) ax
2
+ bx
(ii) 7p
2
+ 21q
2
(iii) 2x
3
+ 2xy
2
+ 2xz
2
(iv) am
2
+ bm
2
+ bn
2
+ an
2
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y
2
– 20y – 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x
Solution:
(i) ax
2
+ bx = x(ax + 5)
(ii) 7p 2 + 21q 2 = 7(p 2 + 3q 2 )
(iii) 2x 3 + 2xy 2 + 2xz 2 = 2x(x 2 + y 2 + z 2 )
(iv) am
2
+ bm
2
+ bn
2
+ an
2
= m
2
(a + b) + n
2
(a + b)
= (a + b)(m
2
+ n
2
)
(v) (lm + l) + m + 1
= l(m + 1) + (m + 1)
= (m + 1) (l + 1)
(vi) y(y + z) + 9(y + z) = (y + z)(y + 9)
(vii) 5y
2
– 20y – 8z + 2yz
= 5y
2
– 20y + 2yz – 8z
= 5y(y – 4) + 2z(y – 4)
= (y – 4) (5y + 2z)
(viii) 10ab + 4a + 5b + 2
= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)
(ix) 6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y(3x – 2) – 3(3x – 2)
= (3x – 2) (2y – 3)
Ex 14.2 Class 8 Maths Question 4.
Factorise.
(i) a
4
– b
4
(ii) p
4
– 81
(iii) x
4
– (y + z)
4
(iv) x
4
– (x – z)
4
(v) a
4
– 2a
2
b
2
+ b
4
Solution:
(i) a
4
– b
4
– (a
2
)
2
– (b
2
)
2
[∵ a
2
– b
2
= (a – b)(a + b)]
= (a
2
– b
2
) (a
2
+ b
2
)
= (a – b) (a + b) (a
2
+ b
2
)
(ii) p
4
– 81 = (p
2
)
2
– (9)
2
= (p
2
– 9) (p
2
+ 9)
[∵ a
2
– b
2
= (a – b)(a + b)]
= (p – 3)(p + 3) (p
2
+ 9)
(iii) x
4
– (y + z)
4
= (x
2
)
2
– [(y + z)
2
]
2
[∵ a
2
– b
2
= (a – b)(a + b)]
= [x
2
– (y + z)
2
] [x
2
+ (y + z)
2
]
= [x – (y + z)] [x + (y + z)] [x
2
+ (y + z)
2
]
= (x – y – z) (x + y + z) [x
2
+ (y + z)
2
]
(iv) x
4
– (x – z)
4
= (x
2
)
2
– [(y – z)
2
]
2
= [x
2
– (y – z)
2
] [x
2
+ (y – z)
2
]
= (x – y + z) (x + y – z) (x
2
+ (y – z)
2
]
(v) a
4
– 2a
2
b
2
+ b
4
= a
4
– a
2
b
2
– a
2
b
2
+ b
4
= a
2
(a
2
– b
2
) – b
2
(a
2
– b
2
)
= (a
2
– b
2
)(a
2
– b
2
)
= (a
2
– b
2
)
2
= [(a – b) (a + b)]
2
= (a – b)
2
(a + b)
2
Ex 14.2 Class 8 Maths Question 5.
Factorise the following expressions.
(i) p
2
+ 6p + 8
(ii) q
2
– 10q + 21
(iii) p
2
+ 6p – 16
Solution:
(i) p
2
+ 6p + 8
Here, 2 + 4 = 6 and 2 × 4 = 8
p
2
+ 6p + 8
= p
2
+ 2p + 4p + 8
= p (p + 2) + 4(p + 2)
= (p + 2) (p + 4)
(ii) q
2
– 10q + 21
Here, 3 + 7 = 10 and 3 × 7 = 21
q
2
– 10q + 21
= q
2
– 3q – 7q + 21
= q(q – 3) – 7(q – 3)
= (q – 3) (q – 7)
(iii) p
2
+ 6p – 16
Here, 8 – 2 = 6 and 8 × 2 = 16
p
2
+ 6p – 16
= p
2
+ 8p – 2p – 16
= p(p + 8) – 2(p + 8)
= (p + 8) (p – 2)
More CBSE Class 8 Study Material
- NCERT Solutions for Class 8 Maths
- NCERT Solutions for Class 8 Science
- NCERT Solutions for Class 8 Social Science
- NCERT Solutions for Class 8 English
- NCERT Solutions for Class 8 English Honeydew
- NCERT Solutions for Class 8 English It So Happened
- NCERT Solutions for Class 8 Hindi
- NCERT Solutions for Class 8 Sanskrit
- NCERT Solutions