Free PDF Download of CBSE Maths Multiple Choice Questions for Class 12 with Answers Chapter 3 Matrices. Maths MCQs for Class 12 Chapter Wise with Answers PDF Download was Prepared Based on Latest Exam Pattern. Students can solve NCERT Class 12 Maths Matrices MCQs Pdf with Answers to know their preparation level.
Matrices Class 12 Maths MCQs Pdf
Question 1.
If A and B are symmetric matrices of the same order, then
(a) AB is a symmetric matrix
(b) A – Bis askew-symmetric matrix
(c) AB + BA is a symmetric matrix
(d) AB – BA is a symmetric matrix
Answer:
(c) AB + BA is a symmetric matrix
Question 2.
If \(A=\left[\begin{array}{cc}
3 & x-1 \\
2 x+3 & x+2
\end{array}\right]\) is a symmetric matrix, then x =
(a) 4
(b) 3
(c) -4
(d) -3
Answer:
(c) -4
Question 3.
If A is a square matrix, then A – A’ is a
(a) diagonal matrix
(b) skew-symmetric matrix
(c) symmetric matrix
(d) none of these
Answer:
(b) skew-symmetric matrix
Question 4.
If A is any square matrix, then which of the following is skew-symmetric?
(a) A + A
T
(b) A – A
T
(c) AA
T
(d) A
T
A
Answer:
(b) A – A
T
Question 5.
(a) α = a
2
+ b
2
, β = ab
(b) α = a
2
+ b
2
, β = 2ab
(c) α = a
2
+ b
2
, β = a
2
– b
2
(d) α = 2ab, β = a
2
+ b
2
Answer:
(b) α = a
2
+ b
2
, β = 2ab
Question 6.
If A = \(\left[\begin{array}{lll}
1 & 2 & x \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
1 & -2 & y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) and AB = I
3
, then x + y equals
(a) 0
(b) -1
(c) 2
(d) None of these
Answer:
(a) 0
Question 7.
If A = \(\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\) and f(x) = (1 + x) (1 – x), then f(a) is
Answer:
(a) \(-4\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Question 8.
If A = \(\left[\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right]\) and A
2
– KA – 5I = 0, then K =
(a) 5
(b) 3
(c) 7
(d) None of these
Answer:
(a) 5
Question 9.
Answer:
(b) \(\left[\begin{array}{cc}
-3 & 10 \\
-2 & 7
\end{array}\right]\)
Question 10.
If matrix A = \(\left[\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right]\) where a, b, c are real positivenumbers, abc = 1 and A
T
A = I, then the value of a
3
+ b
3
+ c
3
is
(a) 1
(b) 2
(c) 3
(d) 4
Answer:
(d) 4
Question 11.
Answer:
(c) \(\frac{1}{11}\left[\begin{array}{ccc}
-1 & -3 & 5 \\
-2 & 5 & -1 \\
7 & -1 & -2
\end{array}\right]\)
Question 12.
Answer:
(a) \(\frac{-1}{11}, \frac{2}{11}\)
Question 13.
Using elementary transformation, find the inverse of matrix \(\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]\)
Answer:
(a) \(\left[\begin{array}{ccc}
1 & -1 & 1 \\
-8 & 7 & -5 \\
5 & -4 & 3
\end{array}\right]\)
Question 14.
Find the inverse of the matrix \(A=\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\), using elementary row transformation.
Answer:
(a) \(\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right]\)
Question 15.
Answer:
(d) \(\frac{1}{2}\)
Question 16.
Find the values of x, y, z respectively if the matrix \(A=\left[\begin{array}{ccc}
0 & 2 y & z \\
x & y & -z \\
x & -y & z
\end{array}\right]\) satisfy the equation A
T
A = I
3
.
(a) \(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}\)
(b) \(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{3}}\)
(c) Both (a) and (b)
(d) None of these
Answer:
(c) Both (a) and (b)
Question 17.
If \(A=\left[\begin{array}{cc}
\cos x & -\sin x \\
\sin x & \cos x
\end{array}\right]\), find AAT.
(a) Zero Matrix
(b) I
2
(c) \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
(d) None of these
Answer:
(b) I
2
Question 18.
If \(A=\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & 0 & 3 \\
-2 & -3 & 0
\end{array}\right]\), then A + 2A
T
equals
(a) A
(b) -A
T
(c) A
T
(d) 2A
2
Answer:
(c) A
T
Question 19.
For any square matrix A, AA
T
is a
(a) unit matrix
(b) symmetric matrix
(c) skew-symmetric matrix
(d) diagonal matrix
Answer:
(b) symmetric matrix
Question 20.
If A = \(\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
9 & 7 & 1
\end{array}\right]\) is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is
Answer:
(a) \(A=\left[\begin{array}{lll}
6 & 6 & 7 \\
6 & 2 & 5 \\
7 & 5 & 1
\end{array}\right]\)
Question 21.
If the matrix A = \(\left[\begin{array}{ccc}
5 & 2 & x \\
y & 2 & -3 \\
4 & t & -7
\end{array}\right]\) is a symmetric matrix, then find the value of x, y and t respectively.
(a) 4, 2, 3
(b) 4, 2, -3
(c) 4, 2, -7
(d) 2, 4, -7
Answer:
(b) 4, 2, -3
Question 22.
If a matrix A is both symmetric and skew-symmetric, then
(a) A is a diagonal matrix
(b) A is a zero matrix
(c) A is a scalar matrix
(d) A is a square matrix
Answer:
(b) A is a zero matrix
Question 23.
The matrix \(\left[\begin{array}{ccc}
0 & 5 & -7 \\
-5 & 0 & 11 \\
7 & -11 & 0
\end{array}\right]\) is
(a) a skew-symmetric matrix
(b) a symmetric matrix
(c) a diagonal matrix
(d) an upper triangular matrix
Answer:
(a) a skew-symmetric matrix
Question 24.
Answer:
(a) \(\frac{1}{13}\left[\begin{array}{ccc}
-1 & 3 & -3 \\
5 & -2 & 15 \\
5 & -2 & 2
\end{array}\right]\)
Question 25.
Answer:
(c) \(\left[\begin{array}{ccc}
0 & -1 & 1 \\
-4 & 3 & -2 \\
-3 & 3 & -2
\end{array}\right]\)
Question 26.
Answer:
(b) \(\left[\begin{array}{ccc}
0 & -1 / 3 & -1 / 2 \\
1 / 3 & 0 & -1 / 5 \\
1 / 2 & 1 / 5 & 0 \\
3 / 5 & 1 / 3 & 1 / 7
\end{array}\right]\)
Question 27.
The matrix A = \(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\) is a
(a) unit matrix
(c) symmetric matrix
(b) diagonal matrix
(d) skew-symmetric matrix
Answer:
(d) skew-symmetric matrix
Question 28.
If \(\left[\begin{array}{cc}
x+y & 2 x+z \\
x-y & 2 z+w
\end{array}\right]=\left[\begin{array}{cc}
4 & 7 \\
0 & 10
\end{array}\right]\), then the values of x, y, z and w respectively are
(a) 2, 2, 3, 4
(b) 2, 3, 1, 2
(c) 3, 3, 0, 1
(d) None of these
Answer:
(a) 2, 2, 3, 4
Question 29.
then find the values of a, b, c, x, y, and z respectively.
(a) -2, -7, -1, -3, -5, 2
(b) 2, 7, 1, 3, 5, -2
(c) 1, 3, 4, 2, 8, 9
(d) -1, 3, -2, -7, 4, 5
Answer:
(a) -2, -7, -1, -3, -5, 2
Question 30.
The order of the single matrix obtained from
(a) 2 × 3
(b) 2 × 2
(c) 3 × 2
(d) 3 × 3
Answer:
(d) 3 × 3
Question 31.
\(A=\left[\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right], B=\left[\begin{array}{ll}
x & 1 \\
y & -1
\end{array}\right]\) and (A + B)
2
= A
2
+ B
2
, then x + y =
(a) 2
(b) 3
(c) 4
(d) 5
Answer:
(d) 5
Question 32.
If A
2
– A + I = O, then the inverse of A is
(a) I – A
(b) A – I
(c) A
(d) A + I
Answer:
(a) I – A
Question 33.
Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is
(a) 9
(b) 27
(c) 81
(d) 512
Answer:
(d) 512
Question 34.
The matrix \(\left[\begin{array}{ccc}
0 & -5 & 8 \\
5 & 0 & 12 \\
-8 & -12 & 0
\end{array}\right]\) is a
(a) diagonal matrix
(b) symmetric matrix
(c) skew symmetric matrix
(d) scalar matrix
Answer:
(c) skew symmetric matrix
Question 35.
If A is a matrix of order m × n and B is a matrix such that AB’ and B’A are both defined, then the order of matrix B is
(a) m × m
(b) n × n
(c) n × m
(d) m × n
Answer:
(d) m × n
Question 36.
If A and B are matrices of the same order, then (AB’ – BA’) is a
(a) skew-symmetric matrix
(b) null matrix
(c) symmetric matrix
(d) unit matrix
Answer:
(a) skew-symmetric matrix
Question 37.
If A is a square matrix such that A
2
= I, then (A – I)
3
+ (A + I)
3
– 7A is equal to
(a) A
(b) I – A
(c) I + A
(d) 3A
Answer:
(a) A
Question 38.
If A = \(\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]\), then A
4
– 2
4
(A – I) =
(a) 5I + A
(b) 5I – A
(c) 5I
(d) 6I
Answer:
(b) 5I – A
Question 39.
If A is an m × n matrix such that AB and BA are both defined, then B is a
(a) m × n matrix
(b) n × m matrix
(c) n × n matrix
(d) m × n matrix
Answer:
(b) n × m matrix
Question 40.
If \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\), then A
2
– 5A is equal to
(a) 2I
(b) 3I
(c) -2I
(d) null matrix
Answer:
(a) 2I
Question 41.
(a) A + B = B + A and A + (B + C) = (A + B) + C
(b) A + B = B + A and AC = BC
(c) A + B = B + A and AB = BC
(d) AC = BC and A = BC
Answer:
(a) A + B = B + A and A + (B + C) = (A + B) + C
We hope the given Maths MCQs for Class 12 with Answers Chapter 3 Matrices will help you. If you have any query regarding CBSE Class 12 Maths Matrices MCQs Pdf, drop a comment below and we will get back to you at the earliest.