• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

LearnCBSE Online

NCERT Solutions | NCERT Books | RD Sharma Solutions | NCERT Exemplar Problems | CBSE Sample Papers

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Integrals Class 12 Maths Important Questions Chapter 7

November 18, 2015 by LearnCBSE Online

Get access to Class 12 Maths Important Questions Chapter 7 Integrals, Application of Integrals Class 12 Important Questions with Solutions Previous Year Questions will help the students to score good marks in the board examination.

Integrals Class 12 Important Questions with Solutions Previous Year Questions

Question 1.
Find ∫\(\frac{\sin ^{2} x-\cos ^{2} x}{\sin x \cos x}\) dx. (All India 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 1
= ∫(tan x – cot x) dx
= ∫ tan x dx – ∫ cot x dx
= log |sec x| – [- log|cosec x|] + C
= log |sec x| + log|cosec x| + C
= log |sec x ∙ cosec x| + C

Question 2.
Find ∫\(\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\) dx. (Delhi 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 2

Question 3.
Find ∫\(\frac{\sin ^{6} x}{\cos ^{8} x}\) dx. (All India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 3

Question 4.
Evaluate ∫\(\frac{d x}{\sin ^{2} x \cos ^{2} x}\). (Delhi 2014C; Foreign 2014)
Answer:
Let I = ∫\(\frac{d x}{\sin ^{2} x \cos ^{2} x}\)
= ∫\(\frac{\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x \cdot \cos ^{2} x}\) [∵ sin 2 θ + cos 2 θ = 1]
= ∫(sec 2 x + cosec 2 x) dx
= ∫sec 2 xdx + ∫ cosec 2 x dx
= tan x – cot x + C

Alternate Method:
On dividing the numerator and denominator by cos 4 x, we get
Integrals Class 12 Maths Important Questions Chapter 7 4

Question 5.
Evaluate ∫cos -1 (sin x) dx. (Delhi 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 5

Question 6.
Write the anti-derivative of (3√x + \(\frac{1}{\sqrt{x}}\) (Delhi 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 6

Question 7.
Evaluate ∫(1 – x)√x dx. (Delhi 2012)
Answer:
First, multiply the two functions and then use
∫x n dx = \(\frac{x^{n+1}}{n+1}\) + C, n ≠ – 1.

Integrals Class 12 Maths Important Questions Chapter 7 7

Question 8.
Given, ∫e x (tan x + 1) sec x dx = e x f(x) + C.
Write f(x) satisfying above. (All India 2012; Foregin 2011)
Answer:
Use the relation ∫e x [f(x) + f'(x)dx = e x f(x) + C and simplify it.

Given that ∫e x (tan x + 1) sec x dx = e x ∙ f(x) + C
⇒ ∫ e x (sec x + sec x tan x)dx = e x f(x) + C
⇒ e x . sec x + C = e x f(x) + C
[∵ e x {f(x) + f’(x)}dx = e x f(x) + C and here \(\frac{d}{d x}\) (sec x) = sec x tan x]
On comparing both sides, we get
f(x) = sec x

Question 9.
Evaluate ∫\(\frac{2}{1+\cos 2 x}\) dx. (Foreign 2012)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 8

Question 10.
Write the value of ∫\(\frac{x+\cos 6 x}{3 x^{2}+\sin 6 x}\) dx. (All India 2012C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 9

Question 11.
Write the value of ∫\(\frac{\sec ^{2} x}{{cosec}^{2} x}\) dx. (Delhi 2012C, 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 10

Question 12.
Write the value of ∫\(\frac{d x}{x^{2}+16}\) (Delhi 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 11

Question 13.
Write the value of ∫\(\frac{2-3 \sin x}{\cos ^{2} x}\) dx. (Delhi 2011)
Answer:
Let I = ∫\(\frac{2-3 \sin x}{\cos ^{2} x}\) dx
= ∫\(\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right)\) dx
= ∫(2 sec 2 x – 3 sec x tan x) dx
= 2∫sec 2 x dx – 3∫sec x tan x dx
= 2 tan x – 3 sec x + C

Question 14.
Write the value of ∫ sec x(sec x + tan x)dx. (Delhi 2011)
Answer:
Let I = ∫sec x(sec x + tan x)dx
= ∫(sec 2 x + sec x tan x)dx
= ∫sec 2 x dx + ∫sec x tan x dx
= tan x + sec x + C

Question 15.
Evaluate ∫\(\frac{d x}{\sqrt{1-x^{2}}}\) (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 12

Question 16.
Evaluate ∫\(\frac{(\log x)^{2}}{x}\) dx. (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 13

Question 17.
Evaluate ∫ \(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\) dx. (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 14

Question 18.
Evaluate ∫ (ax + b ) 3 dx. (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 15

Question 19.
Evaluate ∫\(\frac{(1+\log x)^{2}}{x}\) dx. (ForeIgn 2011; Delhi 2009)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 16

Question 20.
Evaluate ∫\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\) (Foreign 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 17

Question 21.
Evaluate ∫\(\frac{\cos \sqrt{x}}{\sqrt{x}}\) dx. (Foreign 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 18

Question 22.
Evaluate ∫\(\frac{2 \cos x}{3 \sin ^{2} x}\) (All India 2011C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 19

Question 23.
Evaluate ∫\(\frac{x^{3}-x^{2}+x-1}{x-1}\) (Delhi 2011C)
Answer:
First, factorise numerator and cancel out common factor from numerator and denominator and then integrate.
Integrals Class 12 Maths Important Questions Chapter 7 20

Question 24.
Write the value of ∫\(\frac{1-\sin x}{\cos ^{2} x}\)dx. (All India 2011C)
Answer:
Let I = ∫\(\frac{1-\sin x}{\cos ^{2} x}\) dx
= ∫\(\left(\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right)\) dx
= ∫ sec 2 x dx – ∫ sec x tan x dx
= tan x – sec x + C

Question 25.
Evaluate ∫\(\frac{2 \cos x}{\sin ^{2} x}\) dx. (All IndIa 2011C, 2009, 2008)
Answer:
– 2 cosec x + C

Question 26.
Evaluate ∫\(\frac{x^{3}-1}{x^{2}}\) dx. (Delhi 2010C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 21

Question 27.
Evaluate ∫sec 2 (7 – 4x) dx. (Delhi 2010; All India 2010)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 22

Question 28.
Evaluate ∫\(\frac{\log x}{x}\) dx. (All lndia 2010C)
Answer:
\(\frac{(\log x)^{2}}{2}\) + C

Question 29.
Evaluate ∫ 2 x dx. (All India 2010C)
Answer:
Let I = ∫ 2 x dx = \(\frac{2^{x}}{\log 2}\) + C
[∵ ∫a x dx = \(\frac{a^{x}}{\log a}\) + C]

Question 30.
Find ∫\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\) dx. (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 23

Question 31.
Find: ∫ \(\sqrt{1-\sin 2 x}\) dx, \(\frac{\pi}{4}\) < x < \(\frac{\pi}{2}\). (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 24

Question 32.
Find: ∫ sin -1 (2x) dx. (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 25

Question 33.
Find the values of ∫\(\frac{\tan ^{2} x \cdot \sec ^{2} x}{1-\tan ^{6} x}\) dx. (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 26

Question 34.
Find the value of ∫ sin x ∙ log cos x dx. (Delhi 2019)
Answer:
∫ sin x ∙ log cos x dx
Put cos x = t ⇒ – sin x dx = dt
∴ – ∫ log t dt ⇒ – ∫ (log t) ∙ 1 dt
⇒ [log t ∫ 1 dt – ∫ {\(\frac{d}{d t}\) (log t) ∫ 1 dt} dt]
⇒ [(log t) ∙ t – ∫ \(\frac{1}{t}\) ∙ t dt]
⇒ – [t ∙ log t – ∫ 1 dt]
⇒ – [t log t – t] + C
⇒ – t ∙ log 1 + 1 + C
⇒ cos x log cos x + cos x + C

Question 35.
Find ∫ \(\sqrt{3-2 x-x^{2}}\) dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 27

Question 36.
Find ∫\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\) dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 28
= ∫ [(tan x ∙ sec x ) + (cot x ∙ cosec x)] dx
= ∫ sec x ∙ tan x dx + ∫ cot x ∙ cosec x dx
= sec x + (- cosec x) + C = sec x – cosec x + C

Question 37.
Find ∫\(\frac{x-3}{(x-1)^{3}}\) e x dx (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 29

Question 38.
Find ∫\(\frac{x-5}{(x-3)^{3}}\) e x dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 30

Question 39.
Evaluate ∫\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\) dx (CBSE 2018)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 31

Question 40.
Find: ∫\(\frac{3-5 \sin x}{\cos ^{2} x}\) dx (CBSE 2018C)
Answer:
Let I = ∫\(\frac{3-5 \sin x}{\cos ^{2} x}\) dx
= ∫\(\left(\frac{3}{\cos ^{2} x}-\frac{5 \sin x}{\cos ^{2} x}\right)\) dx
= 3 ∫sec 2 x dx – 5 ∫ sec x tan x dx
= 3 tan x – 5 sec x + C

Question 41.
Find ∫\(\frac{d x}{x^{2}+4 x+8}\) (Delhi 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 32

Question 42.
Find ∫\(\frac{d x}{5-8 x-x^{2}}\) (All India 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 33

Question 43.
Find: ∫\(\frac{3 x+5}{x^{2}+3 x-18}\) dx. (Delhi 2019)
Answer:
Let I = ∫\(\frac{3 x+5}{x^{2}+3 x-18}\) dx …… (i)
Also, let 3x + 5 = A \(\frac{d}{d x}\) (x 2 + 3x – 18) + B
3x + 5 = A(2x + 3) + B …….. (ii)
On comparing the coefficient of x, we get
2A = 3 ⇒ A = \(\frac{3}{2}\)
and on comparing the constant term, we gct
B = 5 – 3A ⇒ B = 5 – 3\(\left(\frac{3}{2}\right)\) = \(\frac{1}{2}\)
From Eq. (ii). we get
3x + 5 = \(\frac{3}{2}\)(2x + 3) + \(\frac{1}{2}\) ……. (iii)
From Eqs. (i) and (iii), we get
Integrals Class 12 Maths Important Questions Chapter 7 34

Question 44.
Find the value of ∫\(\frac{\cos x}{(1+\sin x)(2+\sin x)}\) dx. (Delhi 2019)
Answer:
Let I = ∫\(\frac{\cos x}{(1+\sin x)(2+\sin x)}\) dx
Put sin x = t ⇒ cos x dx = dt
Integrals Class 12 Maths Important Questions Chapter 7 35
1 = 2A + tA + B + Bt
1 = 1(2A + B) + t(A + B)
On comparing the coefficients of I and constant term on both sides, we get
2A + B = 1 and A + 8 = 0
⇒ A = 1 and B = – 1
Integrals Class 12 Maths Important Questions Chapter 7 36

Question 45.
Find ∫\(\frac{x^{2}+x+1}{(x+2)\left(x^{2}+1\right)}\) dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 37
⇒ x 2 + x + 1 = A(x 2 + 1) + (Bx + C) (x + 2)
Putting x = – 2
4 – 2 + 1 = A(5) + 0 ⇒ 5A = 3 ⇒ A = \(\frac{3}{5}\)
Putting x = 0,
0 + 0 + 1 = A(0 + 1) + (0 + C) (0 + 2)
⇒ 1 = A + 2C ⇒ 1 = \(\frac{3}{5}\) + 2C ⇒ 2C = \(\frac{2}{5}\) ⇒ C = \(\frac{1}{5}\)
and putting x = 1,
⇒ 1 + 1 + 1 = 2A + (8 + C) (3)
⇒ 3 = 2A + 3(B + C)
Integrals Class 12 Maths Important Questions Chapter 7 38

Question 46.
Find ∫\(\frac{2 \cos x}{(1-\sin x)\left(2-\cos ^{2} x\right)}\) dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 39
⇒ 2 = A(1 + t 2 ) + (Bt + C) (1 – t)
Putting t = 1 in Eq. (i), we get
2 = 2A ⇒ A = 1
Putting t = 0 in Eq. (1). we get
2 = A + C ⇒ 2 = 1 + C ⇒ C = 1
Putting t = – 1 in Eq. (1), we get
2= 2A + (- B + C)
⇒ 2 = 2 – 2B + 2
⇒ 2B = 2 ⇒ B = 1
Integrals Class 12 Maths Important Questions Chapter 7 40

Question 47.
Find ∫\(\frac{2 \cos x}{(1-\sin x)\left(1+\sin ^{2} x\right)}\) dx. (CBSE 2018)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 41
⇒ 2 = (1 + t 2 )A + (1 – t) (Bt + C)
⇒ 2 = (1 + t 2 )A + (Bt + C – Bt 2 – Ct)
⇒ 2 = t 2 (A – B) + t(B – C) + (A + C)
On comparing the coefficients of like powers of t, we get
A – B = 0; B – C = 0 and A + C = 2
⇒ A = B; B = C and A + C = 2
⇒ A = B = C = 1
Integrals Class 12 Maths Important Questions Chapter 7 42

Question 48.
Find ∫\(\frac{4}{(x-2)\left(x^{2}+4\right)}\) dx. (CBSE 2018C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 43
⇒ 4 = A(x 2 + 4) + (Bx + C) (x – 2)
⇒ 4 = x 2 (A + B) + x(- 2B + C) + 4A – 2C
On equating the coefficients of x 2 , x and constant form both sides, we get
A + B = 0 ……. (i)
– 2B + C = 0 ……. (ii)
and 4A – 2C = 4 …….. (iii)
On solving Eqs. (i), (ii) and (iii), we get
A = \(\frac{1}{2}\), B = –\(\frac{1}{2}\) and C = 1
Integrals Class 12 Maths Important Questions Chapter 7 44

Question 49.
Find ∫\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}}\) dx. (Delhi 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 45
⇒ 1 = A(t + 2) 2 + B(t + 1) (t + 2) + C(t + 1)
⇒ 1 = A(t 2 + 4 + 4t) + B(t 2 + 2t + t + 2) + C(t + 1)
⇒ 1 = A(t 2 + 4t + 4) + B(t 2 + 3t + 2) + C(t + 1)
⇒ 1 = t 2 (A + B) + t(4A + 3B + C) + 4A + 2B + C
On comparing the coefficients of 2, and the constant term from both sides, we get
A + B = 0
4A + 3B + C = 0 ……. (ii)
and 4A + 2B + C = 1 …….. (iii)
From Eq. (1), A = – B
Put the value of A in Eqs. (ii) and (iii), we get
– 4B + 3B + C = 0
⇒ – B + C = 0
⇒ B – C = 0 ……. (iv)
and – 4B + 2B + C = 1
⇒ – 2B + C = 1
⇒ 28 – C = – 1
Now, from Eqs. (iv) and (y), we get
– B = 1 ⇒ B = – 1
∴ A = 1 and C = – 1
Integrals Class 12 Maths Important Questions Chapter 7 46

Question 50.
Find ∫\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{4}+4\right)}\) dx. (Delhi 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 47
⇒ 1 = A(t 2 + 4) + (Bt + C) (t + 1)
⇒ 1 = A(t 2 + 4) + (Bt 2 + Bt + Ct + C)
⇒ 1 = t 2 (A + B) +t(B + C) + (4A + C)
On comparing the coefficients of t 2 , t and constant term from both sides, we get
A + B = 0
B + C = 0 ……… (ii)
4A + C = 1 …….. (iii)
From Eqs. (i) and (ii), we get
A – C = 0 …… (iv)
From Eqs. (iii) and (iv), we get
5A = 1
Integrals Class 12 Maths Important Questions Chapter 7 48

Question 51.
Find ∫\(\frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(5-4 \cos ^{2} \theta\right)}\) dθ (All India 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 49

Question 52.
Find ∫\(\frac{(3 \sin \theta-2) \cos \theta}{5-\cos ^{2} \theta-4 \sin \theta}\) dθ (Delhi 2016)
Or
Find ∫\(\frac{(3 \sin x-2) \cos x}{5-\cos ^{2} x-4 \sin x}\) dx.
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 50

Question 53.
Find ∫\(\frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}}\) dx. (Delhi 2016)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 51

Question 54.
Find ∫(x + 3) \(\sqrt{\left(3-4 x-x^{2}\right)}\) dx. (All India 2016; Delhi 2015, 2014C)
Answer:
First, use the method for integral of the form
∫(px + q)\(\sqrt{a x^{2}+b x+c}\) dx,
consider (px + q) = A\(\frac{d}{d x}\) (ax 2 + bx + c) + B,
simplify and get the values of A and B.
Further, simplify the integrand and use the formula
\(\int \sqrt{a^{2}-x^{2}} d x\) = \(\left[\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C\right]\)
Let I = ∫(x + 3) \(\sqrt{3-4 x-x^{2}}\) dx
Given integral is the form of
∫ (px + q) \(\sqrt{a x^{2}+b x+c}\) dx
Let (x + 3) = A \(\frac{d}{d x}\) (3 – 4x – x 2 ) + B
⇒ x + 3 = A(- 4 – 2x) + B
⇒ x + 3 = (- 4A + B) – 2Ax
On comparing the coefficients of x and constant terms, we get
– 2A = I
⇒ A = – \(\frac{1}{2}\)
and – 4A + B = 3 ⇒ 2 + B = 3 ⇒ B = 1 …….. (1)
Thus. (x + 3) = – \(\frac{1}{2}\) (- 4 – 2x) + 1 [from Eq. (1)]
Now, given integral becomes
Integrals Class 12 Maths Important Questions Chapter 7 52

Question 55.
Evaluate ∫\(\frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)}\) dx. (All IndIa 2016F 2015, 2009C)
Answer:
First, use the partial traction ¡n the given integrand,
i.e. write = \(\frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)}\) = \(\frac{A}{x+2}\) + \(\frac{B x+C}{x^{2}+1}\)
Simplify it and get the values of constants A, B and C.
Further, integrate it to get the result.
Let I = ∫\(\frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)}\) dx
By using partial fraction method, we get
\(\frac{x^{2}+x+1}{\left(x^{2}+1\right)(x+2)}\) = \(\frac{A}{x+2}\) + \(\frac{B x+C}{x^{2}+1}\)
⇒ x 2 + x + 1 = A(x 2 + 1) + (Bx + C) (x + 2)
⇒ x 2 + x + 1 = x 2 (A + B) + x(2B + C) + (A + 2C)
On comparing the coefficients of x 2 , x and constant terms both sides, we get
A + B = 1 ……. (ii)
2B + C = 1 …….. (iii)
and A + 2C = 1 ……. (iv)
On substituting the value ofBfrom q. (ii) in Eq. (iii), we get
2(1 – A) + C = 1
⇒ 2 – 2A + C = 1
⇒ 2A – C = 1 ……. (v)
Integrals Class 12 Maths Important Questions Chapter 7 53

Question 56.
Find ∫\(\frac{(2 x-5) e^{2 x}}{(2 x-3)^{3}}\) dx. (All India 2016)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 54

Question 57.
Find ∫ (2x + 5) \(\sqrt{10-4 x-3 x^{2}}\) dx. (Foregin 2016).
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 55
Integrals Class 12 Maths Important Questions Chapter 7 56

Question 58.
Find ∫\(\frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+3\right)\left(x^{2}-5\right)}\) (Foregin 2o16)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 57

Question 59.
Evaluate ∫\(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}\) dx. (Foreign 2016; Delhi 2012)
Answer:
First, put x = sin t and then use integration by parts and simplify it.
Integrals Class 12 Maths Important Questions Chapter 7 58

Question 60.
Find ∫\(\frac{d x}{\sin x+\sin 2 x}\) dx. (Delhi 2015)
Answer:
First, simplify the integrand in such a form that numerator is in sin form and denominator is in cos form, Substitute cos x = t and then convert the given integrand in the form of t.
Now, use partial traction in the integrand and then integrate it. Further, substitute the value oft and get the required result.
Integrals Class 12 Maths Important Questions Chapter 7 59

Question 61.
Integrate w.r.t. x, \(\frac{x^{2}-3 x+1}{\sqrt{1-x^{2}}}\) (Delhi 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 60

Question 62.
Evaluate ∫(3 – 2x) \(\sqrt{2+x-x^{2}}\) dx. (All India 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 61

Question 63.
Find ∫\(\frac{\log |x|}{(x+1)^{2}}\) dx. (All India 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 62

Question 64.
Evaluate ∫\(\frac{\sin (x-a)}{\sin (x+a)}\) dx. (Foreign 2015; Delhi 2013)
Answer:
Let I = ∫\(\frac{\sin (x-a)}{\sin (x+a)}\) dx
put x + a = t
⇒ dx = dt
∴ I = ∫\(\frac{\sin (t-a-a)}{\sin t}\) dt = ∫\(\frac{\sin (t-2 a)}{\sin t}\) dt
= ∫\(\frac{\sin t \cos 2 a-\cos t \sin 2 a}{\sin t}\) dt
[∵ sin(A – B) = sin A cos B – cos A sin B]
= ∫ cos 2a dt – ∫sin 2z . cos t dt
= cos 2a [t] – sin 2a log|sin(x + a)| + C 1
[put t = x + a]
= x cos 2a – sin 2a log|sin(x + a)| + C
where, C = a cos 2a + C 1

Question 65.
∫e 2x sin(3x + 1) dx. (Foreign 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 63

Question 66.
Evaluate ∫\(\frac{x^{2}}{\left(x^{2}+4\right)\left(x^{2}+9\right)}\) dx. (Foreign 2015; Delhi 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 64

Question 67.
Find ∫\(\frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}}\) dx. (Delhi 2015C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 65

Question 68.
Evaluate ∫ (x – 3) \(\sqrt{x^{2}+3 x-18}\) dx. (Delhi 2014)
Answer:
Here, integrand is of the form (px – q)\(\sqrt{a x^{2}+b x+c}\), so firstly write x – 3 as x – 3 = A\(\frac{d}{d x}\) (x 2 + 3x – 18) + B and find A and B.
Then integrate by using suitable method.
Integrals Class 12 Maths Important Questions Chapter 7 66
Integrals Class 12 Maths Important Questions Chapter 7 67

Question 69.
Evaluate ∫\(\frac{x+2}{\sqrt{x^{2}+5 x+6}}\) (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 68

Question 70.
Evaluate ∫ (3x — 2) \(\sqrt{x^{2}+x+1}\) dx. (Foreign 2014)
Answer:
I = (x 2 + x + 1) 3/2 – \(\frac{7}{8}\)(2x + 1)\(\sqrt{x^{2}+x+1}\) – \(\frac{21}{16}\) log\(\left|\frac{(2 x+1)}{2}+\sqrt{x^{2}+x+1}\right|\) + C

Question 71.
Find ∫\(\frac{5 x-2}{1+2 x+3 x^{2}}\) (Delhi 2014C; Delhi 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 69

Question 72.
Find ∫\(\frac{x^{3}}{x^{4}+3 x^{2}+2}\) (All India 2014C)
Answer:
First, put x 2 = t and use partial traction to write integrand in simplest form, Then integrate by using suitable formula.
Integrals Class 12 Maths Important Questions Chapter 7 70

Question 73.
Evaluate ∫\(\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}\) dx. (All India 2014C; Foreign 2014)
Answer:
– \(\sqrt{1-x^{2}}\) cos -1 x – x + C

Question 74.
Evaluate ∫\(\frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x}\) dx. (Delhi 2014C)
Answer:
First, use a 3 + b 3 = (a + b) 3 – 3ab(a + b)to write numerator of integrand in simplest form and then integrate by using suitable method.
Integrals Class 12 Maths Important Questions Chapter 7 71

Question 75.
Evaluate ∫e 2x \(\left(\frac{1-\sin 2 x}{1-\cos 2 x}\right)\) dx. (Delhi 2013C)
Answer:
First, use trigonometric formulae sin 2θ = 2 sin θ cos θ and cos 2θ = 1 – 2 sin 2 θ to write integrand in simplest form and then apply integration by parts to integrate.
Integrals Class 12 Maths Important Questions Chapter 7 72

Question 76.
Evaluate ∫\(\frac{3 x+1}{(x+1)^{2}(x+3)}\) dx. (Delhi 2013C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 73
⇒ 3x + 1 = A(x + 1) (x + 3) + B(x + 3)
⇒ 3x + 1 = A(x 2 + 4x + 3) + B(x + 3) + C(x 2 + 1 + 2x)
⇒ 3x + 1 = (A + C)x 2 + (4A + B + 2C)x + 3A + 3B + C
On comparing like powers of x from both sides, we get
A + C = 0
4A + B + 2C = 3
and 3A + 3B + C = 1
On solving, we get A = 2, B = – 1 and C = – 2
∴ Eq. (1) becomes
Integrals Class 12 Maths Important Questions Chapter 7 74

Question 77.
Evaluate ∫\(\frac{2 x^{2}+1}{x^{2}\left(x^{2}+4\right)}\) dx. (Delhi 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 75

Question 78.
Evaluate ∫\(\frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)}\) dx. (Delhi 2013)
Answer:
– \(\frac{1}{14}\)tan -1 \(\left(\frac{x}{2}\right)\) + \(\left(\frac{x}{5}\right)\)tan -1 \(\) + C

Question 79.
Evaluate ∫\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\) dx. (All India 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 76

Question 80.
Evaluate ∫\(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\) (All India 2013)
Answer:
\(\sqrt{x^{2}+2 x+3}\) + log|(x + 1) + \(\sqrt{x^{2}+2 x+3}\)| + C

Question 81.
Evaluate ∫ \(\frac{d x}{x\left(x^{5}+3\right)}\) (All India 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 77

Question 82.
Evaluate ∫ \(\frac{d x}{x\left(x^{3}+1\right)}\) (All India 2013)
Answer:
\(\frac{1}{3}\) log \(\left|\frac{x^{3}}{x^{3}+1}\right|\) + C

Question 83.
Evaluate ∫ \(\frac{d x}{x\left(x^{3}+8\right)}\) (All India 2013)
Answer:
\(\frac{1}{8}\) log \(\left|\frac{x}{\left(x^{3}+8\right)^{1 / 3}}\right|\) + C

Question 84.
Evaluate ∫ \(\frac{\sqrt{1-\sin x}}{1+\cos x} e^{\frac{-x}{2}}\) dx. (All India 2013C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 78

Question 85.
Evaluate ∫ \(\frac{3 x+5}{x^{3}-x^{2}-x+1}\) dx. (Delhi 2013C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 79
\(\frac{1}{2}\) log \(\left|\frac{x+1}{x-1}\right|\) – \(\frac{4}{x-1}\) + C

Question 86.
Evaluate ∫ sin x ∙ sin 2x ∙ sin 3x dx. (Delhi 2012)
Answer:
It is a product of three trigonometric functions. So, firstly we take two functions at a time and use the relation 2 sin A sin B = cos(A – B) – cos(A + B) and then integrate it.
Integrals Class 12 Maths Important Questions Chapter 7 80

Question 87.
Evaluate ∫ \(\frac{2}{(1-x)\left(1+x^{2}\right)}\) dx. (Delhi 2012)
Answer:
Here, denominator is a product of two algebraic functions. So, firstly we use partial fraction method and then integrate it.
Integrals Class 12 Maths Important Questions Chapter 7 81
⇒ 2 = A(1 + x 2 ) + (Bx + C)(1 – x)
⇒ 2 = A + Ax 2 + Bx + C – Bx 2 – Cx
⇒ 2 = (A – B)x 2 + (B – C)x + (A + C)
On comparing coefficients of x 2 , x and constant
terms from both sides, we get
A – B = 0 ….. (ii)
B – C = 0 ….. (iii)
and A + C = 2 …… (iv)
On solving Eqs. (ii), (iii) and (iv), we get
A = 1, B = 1 and C = 1
Now, Eq. (i) become
Integrals Class 12 Maths Important Questions Chapter 7 82

Question 88.
Evaluate ∫ \(\left(\frac{1+\sin x}{1+\cos x}\right)\) e x dx (All India 2012 C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 83

Question 89.
Evaluate ∫ \(\frac{x^{2}}{(x \sin x+\cos x)^{2}}\) dx. (All India 2012C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 84

Question 90.
Evaluate ∫ e 2x sin x dx. (Foreign 2011)
Answer:
\(\frac{1}{5}\) e 2x (2sin x – cos x) + C

Question 91.
Evaluate ∫\(\frac{3 x+5}{\sqrt{x^{2}-8 x+7}}\) dx. (Foreign 2011)
Answer:
3\(\sqrt{x^{2}-8 x+7}\) + 17 log |(x – 4)| + \(\sqrt{(x-4)^{2}-9}\) + C

Question 92.
Evaluate ∫\(\frac{x^{2}+4}{x^{4}+16}\) dx. (All India 2011C)
Answer:
First, divide numerator and denominator by x 2 and reduce the integrand in standard form.
Integrals Class 12 Maths Important Questions Chapter 7 85

Question 93.
Evaluate ∫\(\frac{x^{2}+1}{x^{4}+1}\) dx. (Delhi 2011C)
Answer:
\(\frac{1}{\sqrt{2}}\) tan -1 \(\left(\frac{x^{2}-1}{x \sqrt{2}}\right)\) + C

Question 94.
Evaluate ∫\(\frac{\sin x-\cos x}{\sqrt{\sin 2 x}}\) dx. (Delhi 2011C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 86

Question 95.
Evaluate ∫\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}\) dx. (Delhi 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 87

Question 96.
Evaluate ∫\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\) dx. (Delhi 2011; All India 2010)
Answer:
5\(\sqrt{x^{2}+4 x+10}\) – 7 log|x + 2 + \(\sqrt{x^{2}+4 x+10}\)| + C

Question 97.
Evaluate ∫ e 2x \(\left(\frac{1+\sin 2 x}{1+\cos 2 x}\right)\) dx. (All India 2010C)
Answer:
\(\frac{1}{2}\) e 2x tan x + C

Question 98.
Evaluate ∫\(\frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2\right)}\) (Delhi 2010C)
Answer:
tan -1 x – \(\frac{1}{\sqrt{2}}\) tan -1 \(\left(\frac{x}{\sqrt{2}}\right)\) + C

Question 99.
Evaluate ∫\(\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right]\) dx. (Delhi 2010C)
Answer:
Use integration by parts, i.e.
Integrals Class 12 Maths Important Questions Chapter 7 88
and choose 1st function with the help of ILATE procedure.
Integrals Class 12 Maths Important Questions Chapter 7 89

Question 100.
Evaluate ∫\(\frac{x+2}{\sqrt{(x-2)(x-3)}}\) dx. (All India 2010)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 90

Question 101.
Evaluate ∫\(\frac{1-x^{2}}{x(1-2 x)}\) dx. (Delhi 2010)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 91
Integrals Class 12 Maths Important Questions Chapter 7 92

Question 102.
Evaluate ∫ e x \(\frac{1-x^{2}}{x(1-2 x)}\) dx. (Delhi 2010)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 93
= ∫e x (cot 2x – 2 cosec 2 2x) dx
We know that
∫ e x [f(x) + f'(x)] dx = e x f(x) + C
Here, f(x) = cot 2x
⇒ f'(x) = – 2 cosec 2 2x
∴ I = e x cot 2x + C

Question 103.
Evaluate ∫\(\frac{1}{\sin ^{4} x+\sin ^{2} x \cos ^{2} x+\cos ^{4} x}\) dx. (All India 2014)
Answer:
First, divide numerator and denominator by cos 4 x to convert integrand in terms of tan x and then put tan x = t and convert integrand into standard form which can integrate easily.
Integrals Class 12 Maths Important Questions Chapter 7 94

Question 104.
Evaluate ∫\((\sqrt{\cot x}+\sqrt{\tan x})\) dx. (All India 2014; Delhi 2010C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 97

Question 105.
Evaluate ∫\(\frac{1}{\cos ^{4} x+\sin ^{4} x}\) (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 95
Integrals Class 12 Maths Important Questions Chapter 7 96

Question 106.
Find ∫\(\frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)}\) (Delhi 2014C)
Answer:
– \(\frac{1}{3}\) tan -1 x + \(\frac{2}{3}\) tan -1 \(\frac{x}{2}\) + C

Question 107.
Find ∫\(\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}\) dx, x ∈ [0, 1] (All India 2014C)
Answer:
First, use the identity sin -1 x + cos -1 x = \(\frac{\pi}{2}\) to convert integrand in terms of sin -1 only. Then, integrate by using substitution.
Integrals Class 12 Maths Important Questions Chapter 7 98

Question 108.
Find ∫\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) dx. (Delhi 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 99
⇒ x 2 + x + 1 = A(x + 1) (x + 2) + B (x + 2) + C(x + 1) 2
⇒ x 2 + x + 1 = A(x 2 + 3x + 2) + B(x + 2) + C(x 2 + 2x + 1)
⇒ x 2 + x + 1 = (A + C)x 2 + (3A + B + 2C)x + (2A + 2B + C)
On comparing the coefficients of like powers from both sides, we get
A + C = 1,
3A + B + 2C = 1
and 2A + 2B + C = 1
On solving these equations, we get (1)
A = -2, B =1
and C = 3
From Eq. (i). we get
Integrals Class 12 Maths Important Questions Chapter 7 100

Question 109.
Find ∫\(\frac{\sqrt{x^{2}+1}\left(\log \left|x^{2}+1\right|-2 \log |x|\right)}{x^{4}}\) dx. (All India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 101

Question 110.
Evaluate ∫\(\frac{x^{2}+1}{(x-1)^{2}(x+3)}\) (Delhi 2012)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 102

Question 111.
Evaluate ∫\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\) dx. (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 103

Topic 2 Definite Integrals

Question 1.
Evaluate \(\int_{2}^{3} 3^{x}\) dx. (Delhi 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 104

Question 2.
Evaluate \(\int_{0}^{\pi / 4} \tan x\) dx. (Foreign 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 105

Question 3.
Evaluate \(\int_{0}^{1} x e^{x^{2}}\) dx. (Foreign 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 106

Question 4.
Evaluate \(\int_{0}^{\pi / 4} \sin 2 x\) dx. (Foreign 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 107

Question 5.
Evaluate \(\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}}\) (All India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 108

Question 6.
If \(\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8}\), then find the value of α. (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 109

Question 7.
If f(x) = \(\int_{0}^{x} t \sin t\) dt, then write the value of f’ (x). (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 110
= – x cos x + 0 + sin x – 0
= sin x – x cos x
Thus. f(x) = sin x – x cos X
On differentiating both sides w.r.t. x, we get
f'(x) = cos x – [x \(\frac{d}{d x}\) (cos x) + cos x \(\frac{d}{d x}\) (x)] [by product rule of derivative]
= cos x – [x (- sin x) + cos x]
= cos x + x sin x – cos x = x sin x

Question 8.
Evaluate \(\int_{2}^{4} \frac{x}{x^{2}+1}\) dx. (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 111

Question 9.
Evaluate \(\int_{0}^{3} \frac{d x}{9+x^{2}}\). (Delhi 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 112

Question 10.
Evaluate \(\int_{0}^{\pi / 2} e^{x}(\sin x-\cos x)\) dx. (Delhi 2014)
Answer:
Let I = \(\int_{0}^{\pi / 2}\) e x (sin x – cos x) dx
I = – \(\int_{0}^{\pi / 2}\) e x (cos x – sin x) dx
Now, consider, f(x) = cos x
then f'(x) = – sin x
Now, by using ∫e x [f(x) + f'(x) dx = e x f(x) + C,
we get I = \(\left[e^{x} \cos x\right]_{0}^{\pi / 2}\)
= – \(e^{\pi / 2}\) cos \(\frac{\pi}{2}\) + e 0 cos (0)
= 0 + 1(1) = 1

Question 11.
Evaluate \(\int_{e}^{e^{2}} \frac{d x}{x \log x}\) (All India 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 113

Question 12.
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}}\) dx. (All India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 114

Question 13.
Evaluate \(\int_{1}^{2} \frac{x^{3}-1}{x^{2}}\) (India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 115

Question 14.
Evaluate \(\int_{2}^{3} \frac{1}{x}\) (Delhi 2012)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 116

Question 15.
Evaluate \(\int_{0}^{2} \sqrt{4-x^{2}}\) dx. (All India 2012)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 117

Question 16.
Write the value of \(\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}}\) dx. (Delhi 2012C)
Answer:
Let I = \(\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}}\) dx
= \(\int_{0}^{1} \frac{e^{x}}{1+\left(e^{x}\right)^{2}}\) dx
Put e x = t ⇒ e x dx = dt
Also, when x = 0, then t = 1 and when x = 1, then t = e
Now, I = \(\int_{1}^{e} \frac{d t}{1+t^{2}}=\left(\tan ^{-1} t\right)_{1}^{e}\)
= tan -1 e – tan -1 1 = tan -1 \(\left(\frac{e-1}{1+e}\right)\)

Question 17.
Evaluate \(\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}\) (Foregin 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 118

Question 18.
Evaluate \(\int_{0}^{1} \frac{2 x}{1+x^{2}}\) dx. (All India 2011C, 2008)
Answer:
log 2

Question 19.
Evaluate \(\int_{0}^{1} \frac{1}{1+x^{2}}\) dx. (Delhi 2011C)
Answer:
\(\frac{\pi}{4}\)

Question 20.
Evaluate \(\int_{-\pi / 4}^{\pi / 4} \sin ^{3} x\) dx. (Delhi 2010C)
Answer:
Use, the property \(\int_{-a}^{a}\) f(x)dx = 0, if f(x) is an odd function
let I = \(\int_{-\pi / 4}^{\pi / 4}\) sin 3 x dx
consider, f(x) = sin 3 x. Then, f(-x) = sin 3 (-x)
= (-sinx) 3 = -sin 3 x = -f(x)
⇒ f(x) is an odd function.
Thus, the given integrand is an odd function.
∴ I = 0
[∵ \(\int_{-a}^{a}\) f(x)dx = 0, if f(x) is an odd function]

Question 21.
Write the value of the following integral
\(\int_{-\pi / 2}^{\pi / 2}\) sin 5 x dx. (All India 2010)
Answer:
0

Question 22.
Evaluate \(\int_{-1}^{2} \frac{|x|}{x}\) dx. (Delhi 2019)
Answer:
Let I = \(\int_{-\pi}^{\pi}\) (1 – x 2 ) sin x cos 2 x dx
Again, let f(x) = (1 – x 2 ) sin x cos 2 x
∴ f(- x) = [1 – (- x) 2 ] sin (- x) cos 2 (- x)
= (1 – x 2 ) (- sin x) cos 2 x
= – (1 – x 2 ) sin x cos 2 x
= – f(x)
∴ f(x) is odd function
∴ I = 0
[∵ \(\int_{-a}^{a}\) f(x) dx = 0, if f(x) is odd function] (1)

Question 23.
Evaluate \(\int_{-1}^{2} \frac{|x|}{x}\) dx. (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 119

Question 24.
Prove that \(\int_{0}^{a} f(x)\) dx = \(\int_{0}^{a} f(a-x)\) dx, hence evaluate \(\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x}\). (Delhi 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 120

Question 25.
Prove that \(\int_{0}^{a} f(x)\) dx = \(\int_{0}^{a} f(a-x)\) dx. and hence evaluate \(\int_{0}^{\pi / 2} \frac{x}{\sin x+\cos x}\) dx. (All India 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 121

Question 26.
Evaluate \(\int_{1}^{\infty}\) ( |x – 1| + |x – 2| + |x – 4|) dx. (All India 2017; Delhi 2011C)
Answer:
Here, |x – 1|, |x – 2| and |x – 4| occurs.
Now, define the absolute function as
Integrals Class 12 Maths Important Questions Chapter 7 122

Question 27.
Evaluate \(\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x}\) dx. (Delhi 2017, All India 2013, 2012 2011C, 2009C, 2008)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 1223

Question 28.
Evaluate \(\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x}\) dx. (All India 2017)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 124

Question 29.
Evaluate \(\int_{-1}^{2}\left|x^{3}-x\right|\) dx. (Delhi 2016; All India 2010)
Answer:
First, define the absolute function in the given interval and then integrate it.
Integrals Class 12 Maths Important Questions Chapter 7 125

Question 30.
Evaluate \(\int_{0}^{\pi} e^{2 x} \cdot \sin \left(\frac{\pi}{4}+x\right)\) dx. (Delhi 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 126
Integrals Class 12 Maths Important Questions Chapter 7 127

Question 31.
Evaluate \(\int_{-2}^{2} \frac{x^{2}}{1+5^{x}}\) dx. (All India 2016)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 128

Question 32.
Evaluate \(\int_{0}^{3 / 2}|x \cos \pi x|\) dx (All India 2016)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 129

Question 33.
Evaluate \(\int_{0}^{\pi} \frac{x}{1+\sin \alpha \sin x}\) dx. (Foreign 2016)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 131

Question 34.
Evaluate \(\int_{-\pi}^{\pi}(\cos a x-\sin b x)^{2}\) dx. (Delhi 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 130

Question 35.
Find \(\int_{0}^{\pi / 4} \frac{d x}{\cos ^{3} x \sqrt{2 \sin 2 x}}\) (All India 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 132

Question 36.
Evaluate \(\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^{x}}\) dx. (Foreign 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 133

Question 37.
Evaluate \(\int_{0}^{\pi / 4} \log (1+\tan x)\) log (1 + tan x) dx. (All India 2015C, 2010; Delhi 2013C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 134

Question 38.
Evaluate \(\int_{\pi / 6}^{\pi / 3} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}}\) dx. (All India 2014C; Delhi 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 135

Question 39.
Evaluate \(\int_{0}^{\pi / 2}\) x 2 sin x dx. (Delhi 2014C)
Answer:
Let I = \(\int_{0}^{\pi / 2}\) x 2 sin x dx
Integrals Class 12 Maths Important Questions Chapter 7 136
= – x 2 cos x + 2[x (sin x) – ∫1 . (sin x) dx]
[using integration by parts]
= – x 2 cos x + 2(sin x + cos x)
Integrals Class 12 Maths Important Questions Chapter 7 137

Question 40.
Prove that
\(\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{\sin x+\cos x}\) dx = \(\frac{1}{\sqrt{2}}\) log(√2 + 1). (All India 2014C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 138
Integrals Class 12 Maths Important Questions Chapter 7 139

Question 41.
Evaluate \(\int_{2}^{5}\) [|x – 2| + |x – 3| + |x – 5|] dx. (Delhi 2013)
Answer:
First, we redefined the integrand of the integral between the given limits (2, 5). After that integrate and simplify it.
For, 2 ≤ x < 5, |x – 2| = (x – 2)
2 ≤ x < 3, |x – 3| = – (x – 3)
3 ≤ x < 5, |x – 3| = (x – 3)
and 2 ≤ x < 5, |x – 5| = (5 – x)
Integrals Class 12 Maths Important Questions Chapter 7 140

Question 42.
Evaluate \(\int_{0}^{4}\) [|x| + |x – 2| + |x – 4|] dx. (Delhi 2013)
Answer:
Let I = \(\int_{0}^{4}\) [|x| + |x – 2| + |x – 4|] dx
Here, redefined the given integrand in given interval (0, 4).
For, 0 < x < 4, |x| = x
0 < x ≤ 2, |x – 2| = – (x – 2)
2 ≤ x < 4, |x – 2| = (x – 2)
0 < x < 4, |x – 4| = – (x – 4)
Integrals Class 12 Maths Important Questions Chapter 7 141

Question 43.
Evaluate \(\int_{3}^{1}\) [|x – 1| + |x – 2| + |x – 3|]dx. (Delhi 2013)
Answer:
5

Question 44.
Evaluate \(\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}}\) dx (All India 2013)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 142

Question 45.
Evaluate \(\int_{0}^{1} \frac{x^{4}+1}{x^{2}+1}\) dx. (All India 2011C)
Answer:
Here, the power of numerator is greater than the power of denominator. So, first we add and subtract 1 in numerator and use formula (a 2 – b 2 ) = (a – b) (a + b)to simplify it and then integrate it.
Integrals Class 12 Maths Important Questions Chapter 7 143

Question 46.
Evaluate \(\int_{0}^{\pi / 2} \frac{x+\sin x}{1+\cos x}\) dx (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 144

Question 47.
Evaluate \(\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3}\) dx. (All India 2011)
Answer:
Here, the power of numerator and denominator are same. So, first we divide numerator by denominator and write integrand in the form \(\left(\frac{R}{D}+Q\right)\), where R = remainder, Q = quotient and D = divisor. Now, integrate it easily by using partial fraction.
Integrals Class 12 Maths Important Questions Chapter 7 145

Question 48.
Evaluate \(\int_{0}^{1} \frac{\log |1+x|}{1+x^{2}}\) dx. (All India 2011C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 146

Question 49.
Evaluate \(\int_{0}^{1} \log \left|\frac{1}{x}-1\right|\) dx. (All India 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 147

Question 50.
Evaluate \(\int_{0}^{\pi} \frac{x}{1+\sin x}\) dx. (Delhi 2010)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 148

Question 51.
Find \(\int_{3}^{1}\) (x 2 + 2 + e 2x ) dx as the limit of sums. (All India 2019)
Answer:
We have \(\int_{3}^{1}\) (x 2 + 2 + e 2x ) dx
On comparing with \(\int_{a}^{b}\) f(x) , we get
a = 1, b = 3, nh = 3 – 1 = 2,
f(x) = x 2 + 2 + e 2x
Clearly, f(1) = 1 2 + 2 + e 2 × 1 = 3 + e 2
f(1 + h) = (1 + h) 2 + 2 + e 2(1 + h)
= 1 + 2h + h 2 + 2 + e 2 + 2h
= 3 + 2h + h 2 + e 2 ∙ e 2h
f(1 + 2h) = (1 + 2h) 2 + 2 + e 2(1 + 2h)
= 1 + 4h + 4h 2 + 2 + e 2 + 4k
= 3 + 4h + 4h 2 + e 2 ∙ e 4h
f(1 + (n – 1) h) = (1 + (n – 1) h) 2 + 2 + e 2(1 + (n – 1)h)
= 1 + 2(n – 1)h + (n – 1) 2 h 2 + 2 + e 2 + 2(n – 1)h
= 3 + 2(n – 1) h + (n – 1) 2 h 2 + e 2 ∙ e 2(n – 1)∙h
∴ f(1) + f(1 + h) + f(a + 2h) + …… + f(1 + (n – 1)h)
= (3 + 3 + 3 + …… + 3 + 2h(1 + 2 + 3 + …… + (n – 1) 2 ) + h 2 (1 2 + 2 2 + 3 2 + …… + (n – 1) 2 ) + e 2 (1 + e 2h + ……. + e 2h (n – 1))
Integrals Class 12 Maths Important Questions Chapter 7 149

Question 52.
Evaluate \(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{16+9 \sin 2 x}\) (CBSE 2018)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 150
put sin x – cos x = t ⇒ (cos x + sin x)dx = dt
Also, when, x = 0, then t = -1 and when, x = \(\frac{\pi}{4}\), then t = 0
Integrals Class 12 Maths Important Questions Chapter 7 151

Question 53.
Evaluate \(\int_{1}^{3}\) (x 2 + 3x + e x ) dx as the limit of the sum. (CBSE 2019)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 152
Integrals Class 12 Maths Important Questions Chapter 7 153

Question 54.
Evaluate \(\int_{1}^{3}\) (3x 2 + 2x + 1) dx as the limit of a sum. (CBSE 2018C)
Answer:
Here, a = 1, b = 3, f(x) = 3x 2 + 2x + 1
Now, nh = b – a = 3 – 1 = 2
Integrals Class 12 Maths Important Questions Chapter 7 154

Question 55.
Evaluate \(\int_{0}^{\pi / 2} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x}\) dx. (Delhi 2014, 2011; AIl India 2010C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 155
Integrals Class 12 Maths Important Questions Chapter 7 156

Question 56.
Evaluate \(\int_{1}^{3}\) (e 2 – 3x + x 2 + 1)dx as a limit of a sum. (Delhi 2015)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 157
Integrals Class 12 Maths Important Questions Chapter 7 158

Question 57.
Evaluate \(\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x}\) dx. (Foreign 2014; Delhi 2014C 2011)
Answer:
First, convert the denominator in the form of (cos x – sin x), then put cos x – sin x = t and simplify it.
Integrals Class 12 Maths Important Questions Chapter 7 159

Question 58.
Evaluate \(\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}\) dx. (Foreign 2014; All India 2008)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 160

Question 59.
Evaluate \(\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x}\) dx. (Foreign 2014; Delhi 2014C, 2010, 2008; All India 2008)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 161
Integrals Class 12 Maths Important Questions Chapter 7 162

Question 60.
Evaluate \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\cot x}}\). (Delhi 2014)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 163

Question 61.
Evaluate \(\int_{1}^{3}\) (3x 2 + 1) dx by the method of limit of sum. (Delhi 2014C)
Answer:
Im limit of a sum, use the relation
Integrals Class 12 Maths Important Questions Chapter 7 164
Integrals Class 12 Maths Important Questions Chapter 7 165

Question 62.
Evaluate \(\int_{1}^{3}\) (2x 2 + 5x) dx as a limit of a sum. (Delhi 2012)
Answer:
we know that, by limit of a sum, we have
Integrals Class 12 Maths Important Questions Chapter 7 166

Question 62.
Evaluate \(\int_{1}^{3}\) (2x 2 + 5x) dx as a limit of a sum. (Delhi 2012)
Answer:
we know that, by limit of a sum, we have
Integrals Class 12 Maths Important Questions Chapter 7 166

Question 63.
Prove that \(\int_{0}^{\pi / 4}(\sqrt{\tan x}+\sqrt{\cot x})\) dx = √2 ∙ \(\frac{\pi}{2}\) (Delhi 2012)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 167

Question 64
\(\int_{\pi / 4}^{\pi / 2} \cos 2 x \cdot \log (\sin x)\) dx (Delhi 2012C)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 168

Question 65.
Evaluate \(\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot {cosec} x}\) dx. (Delhi 2011C 2008; All India 2009)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 169

Question 66.
Evaluate \(\int_{0}^{\pi / 2} 2 \sin x \cos x \tan ^{-1}(\sin x)\) dx. (Delhi 2011)
Answer:
Integrals Class 12 Maths Important Questions Chapter 7 170

Question 67.
Evaluate \(\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}\) (All lndia 2011)
Answer:
\(\frac{\pi}{12}\)

Question 68.
Evaluate \(\int_{1}^{4}\) (x 2 – x) dx as a limit of a sum. (Delhi 2011, 2010)
Answer:
Given integral is \(\int_{1}^{4}\) (x 2 – x) dx
Here, a = 1, b = 4, f(x) = x 2 —x
and nh = b – a = 4 – 1 = 3
Now, f(a) = f(1) = (1) 2 – (1) = 1 – 1 = 0
f(a + h) = f(1 + h)
= (1 + h) 2 – (1 + h)
= 1 + h 2 + 2h – 1 – h
= h 2 + h
Integrals Class 12 Maths Important Questions Chapter 7 171
= [1 + (n – 1)h] 2 – (1 + (n – 1)h]
= 1 + (n – 1) 2 h 2 + 2(n – 1)h – 1 – (n – 1)h
= (n – 1) 2 h 2 + (n – 1)h
Integrals Class 12 Maths Important Questions Chapter 7 172

Question 69.
Evaluate \(\int_{0}^{2}\) (3x 2 – 2) dx as a limit of a sum. (All India 2011C)
Answer:
4

Question 70.
Evaluate \(\int_{0}^{2}\) (x 2 – x) dx as a limit of a sum. (Delhi 2011C)
Answer:
Hint: Here, a = 0, b = 2, nh = 2
\(\frac{2}{3}\)

Question 71.
Evaluate \(\int_{3}^{1}\) (2x 2 + 3) dx as a limit of a sum. (Delhi 2010, 2009C)
Answer:
\(\frac{70}{3}\)

Question 72.
Evaluate \(\int_{2}^{1}\) (x 2 + 5x) dx as a limit of a sum. (Delhi 2010C)
Answer:
\(\frac{59}{6}\)

Question 73.
Evaluate \(\int_{3}^{1}\) (3x 2 + 2x) dx as a limit of a sum. (Delhi 2010)
Answer:
34

AI CONTENT END 1 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="https://www.LearnCBSE.online/important-questions-for-class-12-cbse-maths-types-of-integrals/" dc:identifier="https://www.LearnCBSE.online/important-questions-for-class-12-cbse-maths-types-of-integrals/" dc:title="Integrals Class 12 Maths Important Questions Chapter 7" trackback:ping="https://www.LearnCBSE.online/important-questions-for-class-12-cbse-maths-types-of-integrals/trackback/" /> </rdf:RDF>

Filed Under: CBSE Tagged With: Class 12 Maths , Maths Types of Integrals

  • NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions
  • Student Nutrition - How Does This Effect Studies
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams

LearnCBSE Online

Telegram Twitter Reddit Discord