• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

LearnCBSE Online

NCERT Solutions | NCERT Books | RD Sharma Solutions | NCERT Exemplar Problems | CBSE Sample Papers

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

August 7, 2019 by LearnCBSE Online

Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

Introduction to Trigonometry Class 10 Important Questions Very Short Answer (1 Mark)

Question 1.
If tan θ + cot θ = 5, find the value of tan2θ + cotθ. (2012)
Solution:
tan θ + cot θ = 5 … [Given
tan 2 θ + cot 2 θ + 2 tan θ cot θ = 25 … [Squaring both sides
tan 2 θ + cot 2 θ + 2 = 25
∴ tan 2 θ + cot 2 θ = 23

Question 2.
If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017D)
Solution:
sec 2A = cosec (A – 27°)
cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)
90° – 2A = A – 27°
90° + 27° = 2A + A
⇒ 3A = 117°
∴ ∠A = \(\frac{117^{\circ}}{3}\) = 39°

Question 3.
If tan α = \(\sqrt{3}\) and tan β = \(\frac{1}{\sqrt{3}}\),0 < α, β < 90°, find the value of cot (α + β). (2012)
Solution:
tan α = \(\sqrt{3}\) = tan 60° …(i)
tan β = \(\frac{1}{\sqrt{3}}\) = tan 30° …(ii)
Solving (i) & (ii), α = 60° and β = 30°
∴ cot (α + β) = cot (60° + 30°) = cot 90° = 0

Question 4.
If sin θ – cos θ = 0, find the value of sin4 θ + cos4 θ. (2012, 2017D)
Solution:
sin θ – cos θ = 0 = sin θ = cos θ
⇒ \(\frac{\sin \theta}{\cos \theta}\) = 1 ⇒ tan θ = 1 ⇒ θ = 45°
Now, sin 4 θ + cos 4 θ
= sin 4 45° + cos 4 45°
= \(\left(\frac{1}{\sqrt{2}}\right)^{4}+\left(\frac{1}{\sqrt{2}}\right)^{4}=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}\)

Question 5.
If sec θ + tan θ = 7, then evaluate sec θ – tan θ. (2017OD)
Solution:
We know that,
sec 2 θ – tan 2 θ = 1
(sec θ + tan θ) (sec θ – tan θ) = 1
(7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7; (Given)
∴ sec θ – tan θ = \(\frac{1}{7}\)

Question 6.
Evaluate: 10. \(\frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}}\). (2014)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 1

Question 7.
If cosec θ = \(\frac{5}{4}\), find the value of cot θ. (2014)
Solution:
We know that, cot 2 θ = cosec 2 θ – 1
= \(\left(\frac{5}{4}\right)^{2}\) – 1 ⇒ \(\frac{25}{16}\) – 1 ⇒ \(\frac{25-16}{16}\)
coť 2 θ = \(\frac{9}{16}\) i cot θ = \(\frac{3}{4}\)

Question 8.
If θ = 45°, then what is the value of 2 sec 2 θ + 3 cosec 2 θ ? (2014)
Solution:
2 sec 2 θ + 3 cosec 2 θ = 2 sec 2 45° + 3 cosec 2 45°
= 2(\(\sqrt{2}\)) 2 + 3 (\(\sqrt{2}\)) 2 = 4 + 6 = 10

Question 9.
If \(\sqrt{3}\) sin θ = cos θ, find the value of \(\frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2}\). (2015)
Solution:
\(\sqrt{3}\) sin θ = cos θ … [Given
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 2

Question 10.
Evaluate: sin 2 19° + sin 7 71°. (2015)
Solution:
sin 2 19° + sin 2 71°
= sin 2 19° + sin 2 (90° – 19°)…[∵ sin(90° – θ) = cos θ
= sin 2 19° + cos 2 19° = 1 …[∵ sin 2 θ + cos 2 θ = 1

Question 11.
What happens to value of cos when increases from 0° to 90°? (2015)
Solution:
cos 0° = 1, cos 90° = 0
When θ increases from 0° to 90°, the value of cos θ decreases from 1 to 0.

Question 12.
If tan θ = \(\frac{a}{x}\), find the value of \(\frac{x}{\sqrt{a^{2}+x^{2}}}\). (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 3

Question 13.
If in a right angled ∆ABC, tan B = \(\frac{12}{5}\), then find sin B. (2014)
Solution:
1st method:
tan B = \(\frac{12}{5}\) ∴ cot B = \(\frac{5}{12}\)
cosec 2 B = 1 + cot 2 B
= 1 + \([\left(\frac{5}{12}\right)^{2}/latex] = 1 + [latex]\)
= \(\frac{144+25}{144}=\frac{169}{144}\)
cosec B = \(\frac{13}{12}\) ∴ sin B = \(\frac{12}{13}\)
2nd method:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 4
tan B = \(\frac{12}{5}\)
tan B = \(\frac{AC}{BC}\)
Let AC = 12k, BC = 5k
In rt. ∆ACB,
AB 2 = AC 2 + BC 2 …[Pythagoras theorem
AB 2 = (12k) 2 + (5k) 2
AB 2 = 144k 2 + 25k 2 2 = 169k 2
AB = 13k
∴ sin B = \(\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{12 \mathrm{k}}{13 \mathrm{k}}=\frac{12}{13}\)

Question 14.
If ∆ABC is right angled at B, what is the value of sin (A + C). (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 5
∠B = 90° …[Given
∠A + ∠B + ∠C = 180° …[Angle sum property of a ∆
∠A + ∠C + 90° = 180°
∠A + ∠C = 90°
∴ sin (A + C) = sin 90° = 1 …(taking sin both side

Introduction to Trigonometry Class 10 Important Questions Short Answer-I (2 Marks)

Question 15.
Evaluate: tan 15° . tan 25° , tan 60° . tan 65° . tan 75° – tan 30°. (2013)
Solution:
tan 15°. tan 25°, tan 60°. tan 65°. tan 75° – tan 30°
= tan(90° – 75°) tan(90° – 65°). \(\sqrt{3}\) . tan 65°. tan 75° – \(\frac{1}{\sqrt{3}}\)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 6

Question 16.
Express cot 75° + cosec 75° in terms of trigonometric ratios of angles between 0° and 30°. (2013)
Solution:
cot 75° + cosec 75°
= cot(90° – 15°) + cosec(90° – 15°)
= tan 15° + sec 15° …[cot(90°-A) = tan A
cosec(90° – A) = sec A

Question 17.
If cos (A + B) = 0 and sin (A – B) = 3, then find the value of A and B where A and B are acute angles. (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 7
Putting the value of B in (i), we get
⇒ A = 30° + 30° = 60°
∴ A = 60°, B = 30°

Question 18.
If A, B and C are the interior angles of a ∆ABC, show that sin \(\left(\frac{A+B}{2}\right)\) = cos\(\left(\frac{c}{2}\right)\). (2012)
Solution:
In ∆ABC, ∠A + ∠B + ∠C = 180° …(Angle sum property of ∆
∠A + ∠B = 180° – ∠C
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 8

Question 19.
If x = p sec θ + q tan θ and y = p tan θ + q sec θ, then prove that x 2 – y 2 = p 2 – q 2 . (2014)
Solution:
L.H.S. = x 2 – y 2
= (p sec θ + q tan θ) 2 – (p tan θ + q sec θ) 2
= p 2 sec θ + q 2 tan 2 θ + 2 pq sec 2 tan 2 -(p 2 tan 2 θ + q 2 sec 2 θ + 2pq sec θ tan θ)
= p 2 sec θ + 2 tan 2 θ + 2pq sec θ tan θ – p 2 tan 2 θ – q 2 sec θ – 2pq sec θ tan θ
= p 2 (sec 2 θ – tan 2 θ) – q 2 (sec? 2 θ – tan 2 θ) =
= p 2 – q 2 …[sec 2 θ – tan 2 θ = 1
= R.H.S.

Question 20.
Prove the following identity: (2015)
\(\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}\) = 1 – sin θ . cos θ
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 9

Question 21.
Simplify: \(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\). (2014)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 10
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 11

Question 22.
If x = a cos θ – b sin θ and y = a sin θ + b cos θ, then prove that a 2 + b 2 = x 2 + y 2 . (2015)
Solution:
R.H.S. = x 2 + y 2
= (a cos θ – b sin θ) 2 + (a sin θ + b cos θ) 2
= a 2 cos 2 θ + b 2 sin 2 θ – 2ab cos θ sin θ + a 2 sin 2 θ + b 2 cos 2 θ + 2ab sin θ cos θ
= a 2 (cos 2 θ + sin 2 θ) + b 2 (sin 2 θ + cos 2 θ)
= a 2 + b 2 = L.H.S. …[∵ cos 2 θ + sin 2 θ = 1

Introduction to Trigonometry Class 10 Important Questions Short Answer – II (3 Marks)

Question 23.
Given 2 cos 3θ = \(\sqrt{3}\), find the value of θ. (2014)
Solution:
2 cos 3θ = \(\sqrt{3}\) …[Given
cos 3θ = \(\frac{\sqrt{3}}{2}\) ⇒ cos 3θ = cos 30°
30 = 30° ∴ θ = 10°

Question 24.
If cos x = cos 40° . sin 50° + sin 40°. cos 50°, then find the value of x. (2014)
Solution:
cos x = cos 40° sin 50° + sin 40° cos 50°
cos x = cos 40° sin(90° – 40°) + sin 40°.cos(90° – 40°)
cos x = cos 2 40° + sin 2 40°
cos x = 1 …[∵ cos 2 A + sin 2 A = 1
cos x = cos 0° ⇒ x = 0°

Question 25.
If sin θ = \(\frac{1}{2}\), then show that 3 cos θ – 4 cos 3 θ = 0. (2014)
Solution:
sin θ = \(\frac{1}{2}\)
sin θ = sin 30° ⇒ θ = 30°
L.H.S = 3 cos θ – 4 cos 3 θ
= 3 cos 30° – 4 cos 3 (30°)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 12

Question 26.
If 5 sin θ = 4, prove that \(\frac{1}{\cos \theta}+\frac{1}{\cot \theta}\) = 3 (2013
Solution:
Given: 5 sin θ = 4
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 13

Question 27.
Evaluate: sec 41°. sin 49° + cos 29°.cosec 61° Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 14 (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 15

Question 28.
Evaluate: (2012, 2017D)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 16
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 17

Question 29.
In figure, ∆PQR right angled at Q, PQ = 6 cm and PR = 12 cm. Determine ∠QPR and ∠PRQ. (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 18
Solution:
In rt. ∆PQR,
PQ 2 + QR 2 = PR 2 …[By Pythogoras’ theorem
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 19
(6) 2 + QR 2 = (12) 2
QR 2 = 144 – 36
QR 2 = 108
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 20

Question 30.
Find the value of: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 21
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 22
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 23

Question 31.
Prove that: \(\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\sec ^{2} 20^{\circ}-\cot ^{2} 70^{\circ}}\) + 2 sin 36° sin 42° sec 48° sec 54° (2017OD)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 24

Question 32.
If sin θ = \(\frac{12}{13}\), 0° <0 < 90°, find the value of: \(\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cdot \cos \theta} \times \frac{1}{\tan ^{2} \theta}\) (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 25
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 26

Question 33.
Prove that: (2012)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 27
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 28

Question 34.
Prove that: \(\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}\) (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 29

Question 35.
If tan θ = \(\frac{a}{b}\), prove that \(\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\) (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 30
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 31

Question 36.
Prove the identity: (sec A – cos A). (cot A + tan A) = tan A . sec A. (2014)
Solution:
L.H.S.= (sec A – cos A) (cot A + tan A)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 32

Question 37.
If sec θ + tan θ = p, prove that sin θ = \(\frac{p^{2}-1}{p^{2}+1}\) (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 33

Question 38.
Prove that: \(\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}\) = tan θ (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 34

Question 39.
Prove that: \(\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}\) = 2 cosec θ (2017OD)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 35

Introduction to Trigonometry Class 10 Important Questions Long Answer (4 Marks)

Question 40.
In an acute angled triangle ABC, if sin (A + B – C) = \(\frac{1}{2}\) and cos (B + C – A) = \(\frac{1}{\sqrt{2}}\), find ∠A, ∠B and ∠C. (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 36
Putting the values of A and B in (iii), we get
67.5° + B + 75o = 180°
B = 180° – 67.5° – 75o = 37.5°
∴ ∠A = 67.5°, ∠B = 37.5° and ∠C = 75°

Question 41.
Evaluate: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 37
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 38

Question 42.
Evaluate the following: (2015)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 39
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 40

Question 43.
If θ = 30°, verify the following: (2014)
(i) cos 3θ = 4 cos 3 θ – 3 cos θ
(ii) sin 3θ = 3 sin θ – 4 sin 3 θ
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 41
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 42

Question 44.
If tan (A + B) = \(\sqrt{3}\) and tan (A – B) = \(\frac{1}{\sqrt{3}}\) where 0 < A + B < 90°, A > B, find A and B. Also calculate: tan A. sin (A + B) + cos A. tan (A – B). (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 43

Question 45.
Find the value of cos 60° geometrically. Hence find cosec 60°. (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 44
Let ∆ABC be an equilateral ∆.
Let each side of triangle be 2a.
Since each angle in an equilateral ∆ is 60°
∴ ∠A = ∠B = ∠C = 60°
Draw AD ⊥ BC
In ∆ADB and A∆ADC,
AB = AC … [Each = 2a
AD = AD …[Common
∠1 -∠2 … [Each 90°
∴ ∆ADB = ∆ADC …[RHS congruency rule
BD = DC = \(\frac{2 a}{2}\) = a
In rt. ∆ADB, cos 60° = \(\frac{\mathrm{BD}}{\mathrm{AB}}=\frac{a}{2 a}=\frac{1}{2}\)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 45

Question 46.
If tan(20° – 3α) = cot(5α – 20°), then find the value of α and hence evaluate: sin α. sec α . tan α – cosec α . cos α . cot α. (2014)
Solution:
tan(20° – 3α) = cot(5α – 20°)
tan(20° – 3α) = tan[90° – (5α – 20°)] …[∵ cot θ = tan(90° – θ)]
∴ 20° – 3α = 90° – 5α + 20°
⇒ -3α + 5α = 90° + 20° – 20°
⇒ 2α = 90° ⇒ α = 45°
Now, sin α . sec α tan α – cosec α . cos α . cot α
= sin 45°. sec 45° tan 45° – cosec 45°. cos 45° cot 45°
= \(\frac{1}{\sqrt{2}} \times \sqrt{2} \times 1-\sqrt{2} \times \frac{1}{\sqrt{2}} \times 1=1-1=0\)

Question 47.
If \(\frac{x}{a}\)cosθ + \(\frac{y}{b}\)sinθ = 1 and \(\frac{x}{a}\)sinθ – \(\frac{y}{b}\) cosθ = 1, prove that event \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\) = 2. (2012, 2017D)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 46
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 47
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 48

Question 48.
If sin θ = \(\frac{c}{\sqrt{c^{2}+d^{2}}}\) and d > 0, find the values of cos θ and tan θ. (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 49

Question 49.
If cot B = \(\frac{12}{5}\), prove that tan 2 B – sin 2 B = sin 4 B . sec 2 B. (2013)
Solution:
cot B = \(\frac{12}{5}\) :: \(\frac{A B}{B C}=\frac{12}{5}\)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 50
AB = 12k, BC = 5k
In rt. ∆ABC, …[By Pythagoras’ theorem
AC 2 = AB 2 + BC 2
AC 2 = (12k) 2 + (5k) 2
AC 2 = 144k 2 + 25k 2
AC 2 = 169k 2
AC = +13k …[∵ Hypotenuse cannot be -ve
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 51

Question 50.
If \(\sqrt{3}\) cot 2 θ – 4 cot θ + \(\sqrt{3}\) = 0, then find the value of cot 2 θ + tan 2 θ. (2013)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 52

Question 51.
Prove that b 2 x 2 – a 2 y 2 = a 2 b 2 , if: (2014)
(i) x = a sec θ, y = b tan θ
(ii) x = a cosec θ, y = b cot θ
Solution:
(i) L.H.S. = b 2 x 2 – a 2 y 2
= b 2 (a sec θ) 2 – a 2 (b tan θ) 2
= b 2 a 2 sec θ – a 2 b 2 tan 2 θ
= b 2 a 2 (sec 2 θ – tan 2 θ)
= b 2 a 2 (1) …[∵ sec 2 θ – tan 2 θ = 1
= a 2 b 2 = R.H.S.

(ii) L.H.S. = b 2 x 2 – a 2 y 2
= b 2 (a cosec θ) 2 – a 2 (b cot θ) 2
= b 2 a 2 cosec 2 θ – a 2 b 2 cot 2 θ
= b 2 a 2 (cosec 2 θ – cot 2 θ)
= b 2 a 2 (1) ..[∵ cosec 2 θ – cot 2 θ = 1
= a 2 b 2 = R.H.S.

Question 52.
If sec θ – tan θ = x, show that sec θ + tan θ = \(\frac{1}{x}\) and hence find the values of cos θ and sin θ. (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 53
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 54

Question 53.
If cosec θ + cot θ = p, then prove that cos θ = \(\frac{p^{2}-1}{p^{2}+1}\). (2012)
Solution:
cosec θ + cot θ = p
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 55

Question 54.
If tan θ + sin θ = p; tan θ – sin θ = q; prove that p 2 – q 2 = \(4 \sqrt{p q}\). (2012)
Solution:
L.H.S. = p 2 – q 2
= (tan θ + sin θ) 2 – (tan θ – sin θ) 2
= (tan 2 θ + sin 2 θ + 2.tanθ.sinθ) – (tan 2 θ + sin 2 θ – 2tan θ sin θ)
= 2 tan θ sin θ+ 2 tan θ sin θ
= 4 tan θ sin θ …(i)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 56

Question 55.
If sin θ + cos θ = m and sec θ + cosec θ = n, then prove that n(m 2 – 1) = 2m. (2013)
Solution:
m 2 – 1 = (sin θ + cos θ) 2 – 1
= sin 2 θ + cos 2 θ + 2 sin θ cos θ – 1
= 1 + 2 sin θ cos θ – 1
= 2 sin θ cos θ …[sin 2 θ + cos 2 θ = 1
L.H.S. = n(m 2 – 1)
= (sec θ + cosec θ) 2 sin θ cos θ
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 57

Question 56.
Prove that: Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 58 = 2 cosec A (2012)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 59

Question 57.
In ∆ABC, show that sin 2 \(\frac{\mathbf{A}}{2}\) + sin 2 \(\frac{\mathbf{B}+\mathbf{C}}{\mathbf{2}}\) = 1. (2013)
Solution:
In ∆ABC, ∠A + ∠B + ∠C = 180° … [Sum of the angles of ∆
∠B + ∠C = 180° – ∠A
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 60

Question 58.
Find the value of: (2013)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 61
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 62

Question 59.
Prove that: (sin θ + cos θ + 1). (sin θ – 1 + cos θ) . sec θ . cosec θ = 2 (2014)
Solution:
L.H.S. = (sin θ + cos θ + 1) (sin θ – 1 + cos θ) . sec θ cosec θ
= [(sin θ + cos θ) + 1] [(sin θ + cos θ) – 1] . sec θ cosec θ
= [(sin θ + cos θ) 2 – (1) 2 ] sec θ cosec θ …[∵ (a + b)(a – b) = a 2 – b 2
= (sin 2 θ + cos 2 θ + 2 sin θ cos θ – 1]. sec θ cosec θ
= (1 + 2 sin θ cos θ – 1). sec θ cosecθ …[∵ sin 2 θ + cos 2 θ = 1
= (2 sin θ cos θ). \(\frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta}\)
= 2 = R.H.S. …(Hence proved)

Question 60.
Prove that: (2014)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 63
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 64

Question 61.
Prove that: (1 + cot A + tan A). (sin A – cos A) = \(\frac{\sec ^{3} A-\csc ^{3} A}{\sec ^{2} A \cdot \csc ^{2} A}\) (2015)
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 65

Question 62.
Prove the identity: (2015)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 66
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 67

Question 63.
Prove the following trigonometric identities: sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A. (2015)
Solution:
L.H.S.
= sin A (1 + tan A) + cos A (1 + cot A)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 68

Question 64.
Prove that: (cot A + sec B) 2 – (tan B – cosec A) 2 = 2(cot A . sec B + tan B. cosec A) (2014)
Solution:
L.H.S.
= (cot A + sec B) 2 – (tan B – cosec A) 2
= cot 2 A + sec 2 B + 2 cot A sec B – (tan 2 B + cosec 2 A – 2 tan B cosec A)
= cot 2 A + sec 2 B + 2 cot A sec B – tan 2 B – cosec 2 A + 2 tan B cosec A
= (sec 2 B – tan 2 B) – (cosec 2 A – cot 2 A) + 2(cot A sec B + tan B cosec A)
= 1 – 1 + 2(cot A sec B + tan B cosec A) … [∵ sec 2 B – tan 2 B = 1
cosec 2 A – cot 2 A = 1
= 2(cot A . sec B + tan B . cosec A) = R.H.S.

Question 65.
If x = r sin A cos C, y = r sin A sin C and z = r cos A, then prove that x 2 + y 2 + z 2 = r 2 . (2017OD)
Solution:
x = r sin A cos C; y = r sin A sin C; z = r cos A
Squaring and adding,
L.H.S. x 2 + y 2 + z 2 = 2 sin 2 A cos 2 C + r 2 sin 2 A sin 2 C + r 2 cos 2 A
= r 2 sin 2 A(cos 2 C + sin 2 C) + r 2 cos 2 A
= r 2 sin 2 A + r 2 cos 2 A … [cos 2 θ + sin 2 θ = 1
= r 2 (sin 2 A + cos 2 A) = r 2 = R.H.S.

Question 66.
Prove that: (2017OD)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 69
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 70

Question 67.
In the adjoining figure, ABCD is a rectanlge with breadth BC = 7 cm and ∠CAB = 30°. Find the length of side AB of the rectangle and length of diagonal AC. If the ∠CAB = 60°, then what is the size of the side AB of the rectangle. [Use \(\sqrt{3}\) = 1.73 and \(\sqrt{2}\) = 1.41, if required) (2014OD)
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 71
Solution:
Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 72

Important Questions for Class 10 Maths

AI CONTENT END 2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="https://www.LearnCBSE.online/important-questions-for-class-10-maths-chapter-8/" dc:identifier="https://www.LearnCBSE.online/important-questions-for-class-10-maths-chapter-8/" dc:title="Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry" trackback:ping="https://www.LearnCBSE.online/important-questions-for-class-10-maths-chapter-8/trackback/" /> </rdf:RDF>

Filed Under: CBSE

  • NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions
  • Student Nutrition - How Does This Effect Studies
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams

LearnCBSE Online

Telegram Twitter Reddit Discord