Factorisation of Algebraic Expressions RD Sharma Class 9 Solutions
RD Sharma Class 9 Chapter 5 Factorisation of Algebraic Expressions Ex 5.1
Factorize
Question 1.
x
3
+ x – 3x
2
– 3
Solution:
x
3
+ x – 3x
2
– 3
x
3
– 3a
2
+ x – 3
⇒ x
2
(x – 3) + 1(x – 3)
= (x – 3) (x
2
+ 1)
Question 2.
a(a + b)
3
– 3a
2
b(a + b)
Solution:
a(a + b
)
3
– 3
a
2
b(a
+
b)
= a(a
+
b) {(a
+
b)
2
–
3
ab}
= a(a
+ b) {a
2
+ b
2
+ 2ab
– 3
ab}
= a{a
+
b) {a
2
– ab + b
2
)
Question 3.
x(x
3
– y
3
) + 3xy(x – y)
Solution:
x(x
3
– y
3
) + 3xy(x – y)
= x(x – y) (x
2
+ xy + y
2
) + 3xy(x – y)
= x(x – y) (x
2
+ xy + y
2
+ 3y)
= x(x – y) (x
2
+ xy + y
2
+ 3y)
Question 4.
a
2
x
2
+ (ax
2
+1)x + a
Solution:
a
2
x
2
+ (ax
2
+ 1)x + a
= a
2
x
2
+ a + (ax
2
+ 1)x
= a(ax
2
+ 1) + x(ax
2
+ 1)
= (ax
2
+ 1) (a + x)
= (x + a) (ax
2
+ 1)
Question 5.
x
2
+ y – xy – x
Solution:
x
2
+ y – xy – x
= x
2
-x-xy + y = x(x- l)-y(*- 1)
= (x – 1) (x – y)
Question 6.
X
3
– 2x
2
y + 3xy
2
– 6y
3
Solution:
x
3
– 2x
2
y + 3xy
2
–
6
y
3
= x
2
(x – 2y)
+
3y
2
(x – 2y)
= (x – 2y) (x
2
+ 3y
2
)
Question 7.
6
ab – b
2
+ 12ac – 2bc
Solution:
6ab – b
2
+ 12ac – 2bc
= 6ab + 12ac – b
2
– 2bc
= 6a(b + 2c) – b(b + 2c)
= (b + 2c) (6a – b)
Question 8.
x(x – 2) (x – 4) + 4x – 8
Solution:
x(x – 2) (x – 4) + 4x – 8
= x(x – 2) (x – 4) + 4(x – 2)
= (x – 2) [x(x – 4) + 4]
= (x – 2) (x
2
– 4x + 4)
= (x – 2) [(x)
2
– 2 x x x 2 + (2)
2
]
= (x – 2) (x – 2)
2
= (x – 2)
3
Question 9.
(a – b + c)
2
+ (b – c + a)
2
+ 2(a – b + c) (b – c + a)
Solution:
(a –
b
+ c)
2
+
( b- c+a)
2
+ 2(a
– b + c) (b – c
+ a)
{∵
a
2
+ b
2
+ 2ab
= (a + b)
2
}
= [a – b + c + b- c + a]
2
= (2a)
2
= 4a
2
Question 10.
a
2
+ 2ab + b
2
– c
2
Solution:
a
2
+ 2ab + b
2
– c
2
= (a
2
+ 2ab + b
2
) – c
2
= (a + b)
2
– (c)
2
{
∵
a
2
– b
2
= (a + b) (a – b)}
= (a + b + c) (a + b – c)
Question 11.
a
2
+ 4b
2
– 4ab – 4c
2
Solution:
Question 12.
x
2
– y
2
– 4xz + 4z
2
Solution:
x
2
– y
2
– 4xz + 4z
2
= x
2
– 4xz + 4z
2
– y
2
= (x)
2
– 2 x x x 2z + (2z)
2
– (y)
2
= (x – 2z)
2
– (y)
2
= (x – 2z + y) (x – 2z – y)
= (x +y – 2z) (x – y – 2z)
Question 13.
Solution:
Question 14.
Solution:
Question 15.
Solution:
Question 16.
Give possible expression for the length and breadth of the rectangle having 35y
2
+ 13y – 12 as its area.
Solution:
Area of a rectangle = 35y
2
+ 13y – 12
= 35y
2
+ 28y- 15y- 12
(i) If length = 5y + 4, then breadth = 7y – 3
(ii) and if length = 7y-3, then length = 5y+ 4
Question 17.
What are the possible expressions for the dimensions of the cuboid whose volume is 3x
2
– 12x.
Solution:
Volume 3x
2
– 12x
= 3x(x – 4)
∴ Factors are 3, x, and x – 4
Now, if length = 3, breadth = x and height = x – 4
if length =3, breadth = x – 4, height = x
if length = x, breadth = 3, height = x – 4
if length = x, breadth = x – 4, height = 3
if length = x – 4, breadth = 3, height = x
if length – x – 4, breadth = x, height = 3
Question 18.
Solution:
Question 19.
(x + 2) (x
2
+ 25) – 10x
2
– 20x
Solution:
(x + 2) (x
2
+ 25) – 10x
2
– 20x
= (x + 2) (x
2
+ 25) – 10x(x + 2)
= (x + 2) [x
2
+ 25 – 10x]
= (x + 2) [(x)
2
– 2 x
x
x 5 + (5)
2
]
= (x + 2) (x – 5)
2
Question 20.
2a
2
+ 2\(\sqrt { 6 } \) ab +3b
2
Solution:
2a
2
+ 2\(\sqrt { 6 } \) ab +3 b
2
= (\(\sqrt { 2 } \) a)
2
+ \(\sqrt { 2 } \) a x \(\sqrt { 3 } \) b+ (\(\sqrt { 3 } \) b)
2
= (\(\sqrt { 2 } \)a + \(\sqrt { 3 } \) b)
2
Question 21.
a
2
+ b
2
+ 2(ab + bc + ca)
Solution:
a
2
+ b
2
+ 2(ab + bc + ca)
= a
2
+ b
2
+ 2 ab + 2 bc + 2 ca
= (a + b)
2
+ 2c(b + a)
= (a + b)
2
+ 2c(a + b)
= (a + b) (a + b + 2c)
Question 22.
4(x – y)
2
– 12(x -y) (x + y) + 9(x + y)
2
Solution:
4(x – y)
2
– 12(x – y) (x + y) + 9(x + y)
2
= [2(x – y)
2
+ 2 x 2(x – y) x 3(x + y) + [3 (x+y]
2
{
∵
a
2
+ b
2
+ 2 abc = (a + b)
2
}
= [2(x – y) + 3(x + y)]
2
= (2x-2y + 3x + 3y)
2
= (5x + y)
2
Question 23.
a
2
– b
2
+ 2bc – c
2
Solution:
a
2
– b
2
+ 2bc – c
2
= a
2
– (b
2
– 2bc + c
2
) {
∵
a
2
+ b
2
– 2abc = (a – b)
2
}
= a
2
– (b – c)
2
= (a)
2
– (b – c)
2
{
∵
a
2
– b
2
= (a + b) (a – b)}
= (a + b – c) (a – b + c)
Question 24.
xy
9
– yx
9
Solution:
xy
9
– yx
9
= xy(y
8
– x
8
)
= -xy(x
8
– y
8
)
= -xy[(x
4
)
2
– (y
4
)
2
]
= -xy (x
4
+ y
4
) (x
4
– y
4
) {
∵
a
2
-b
2
= (a + b) (a – b)}
= -xy (x
4
+ y
4
) {(x
2
)
2
– (y
2
)
2
}
= -xy(x
4
+ y
4
) (x
2
+ y
2
) (x
2
– y
2
)
= -xy (x
4
+y
4
) (x
2
+ y
2
) (x + y) (x -y)
= -xy(x – y) (x + y) (x
2
+ y
2
) (x
4
+ y
4
)
Question 25.
x
4
+ x
2
y
2
+ y
4
Solution:
x
4
+ x
2
y
2
+ y
4
= (x
2
)
2
+ 2x
2
y
2
+ y
4
– x
2
y
2
(Adding and subtracting x
2
y
2
)
= (x
2
+ y
2
)
2
– (xy)
2
{
∵
a
2
– b
2
= (a + b) (a – b)}
= (x
2
+ y
2
+ xy) (x
2
+ y
2
– xy)
= (x
2
+ xy + y
2
) (x
2
– xy + y
2
)
Question 26.
x
2
+ 6\(\sqrt { 2 } \)x + 10
Solution:
Question 27.
x
2
+ 2\(\sqrt { 2 } \)x- 30
Solution:
Question 28.
x
2
– \(\sqrt { 3 } \)x – 6
Solution:
Question 29.
x
2
+ 5 \(\sqrt { 5 } \)x + 30
Solution:
Question 30.
x
2
+ 2 \(\sqrt { 3 } \)x – 24
Solution:
Question 31.
5 \(\sqrt { 5 } \)x
2
+ 20x + 3\(\sqrt { 5 } \)
Solution:
Question 32.
2x
2
+ 3\(\sqrt { 5 } \) x + 5
Solution:
Question 33.
9(2a – b)
2
– 4(2a – b) – 13
Solution:
Question 34.
7(x-2y) – 25(x-2y) +12
Solution:
Question 35.
2(x+y) – 9(x+y) -5
Solution:
2(x+y) – 9(x+y) -5
Factorisation of Algebraic Expressions RD Sharma Class 9 Solutions Chapter 5 Exercise-5.1
Factorisation of Algebraic Expressions RD Sharma Class 9 Solutions Chapter 5 Exercise-5.1 Q 1.
- Factorisation of Algebraic Expressions Exercise 5.1
- Factorisation of Algebraic Expressions Exercise 5.2
- Factorisation of Algebraic Expressions Exercise 5.3
- Factorisation of Algebraic Expressions Exercise 5.4