• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

LearnCBSE Online

NCERT Solutions | NCERT Books | RD Sharma Solutions | NCERT Exemplar Problems | CBSE Sample Papers

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Determinants Class 12 Maths Important Questions Chapter 4

July 4, 2022 by LearnCBSE Online

Get access to Class 12 Maths Important Questions Chapter 4 Determinants, Determinants Class 12 Important Questions with Solutions Previous Year Questions will help the students to score good marks in the board examination.

Determinants Class 12 Important Questions with Solutions Previous Year Questions

Expansion of Determinant

Question 1.
Find |AB|, if A = \(\left[\begin{array}{rr}
0 & -1 \\
0 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right]\). (All India 2019)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 1

Question 2.
Find the maximum value of (Delhi 2016)
\(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|\)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 2
= [(1 + sinθ)(1 + cosθ) – 1] – [1 + cosθ – 1] + [1 – 1 – sinθ]
= 1 + cosθ + sinθ + sinθcosθ – 1 – cosθ – sinθ
= sinθcosθ
= |\(\frac{1}{2}\)|(2sinθcosθ) = \(\frac{1}{2}\)sin2θ
We know that, maximum value of sin 2θ is 1.
∴ Δ max = \(\frac{1}{2}\) × 1 = \(\frac{1}{2}\)

Question 3.
If \(\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right|\) = 8, write the value of x. (Foreign 2016)
Answer:
We have, \(\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right|\) = 8

On expanding along R 1 , we get
x (- x 2 -1) – sinθ(- x sinθ – cosθ) + cosθ(- sinθ + x cosθ) = 8
⇒ – x 3 – x + x sin 2 θ + sinθcosθ – sinθcosθ + x cos2θ = 8
⇒ – x 3 – x + x (sin 2 θ + cos 2 θ) = 8
⇒ -x 3 – x + x = 8 [∵ sin 2 θ + cos 2 θ = 1]
⇒ – x 3 = 8 ⇒ x 3 + 8 = 0 ⇒ x 3 + 2 3 = 0
⇒ (x + 2)(x 2 + 4 – 2x) = 0
⇒ x = -2 [∵ x 2 – 2x + 4 = 0, gives imaginary values]

Question 4.
If A = \(\left[\begin{array}{ccc}
5 & 6 & -3 \\
-4 & 3 & 2 \\
-4 & -7 & 3
\end{array}\right]\), then write the cofactor of the element a 21 of its 2nd row. (Foreign 2015)
Answer:
Given, A = \(\left[\begin{array}{ccc}
5 & 6 & -3 \\
-4 & 3 & 2 \\
-4 & -7 & 3
\end{array}\right]\)

Now, Cofactors of a 21 = (-1)\(\left|\begin{array}{cc}
6 & -3 \\
-7 & 3
\end{array}\right|\)
= -(18 – 21) = 3

Question 5.
If A = \(\left[\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right]\), write the value of |AB|. (Delhi 2015C)
Answer:
Clearly, |A| = \(\left|\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right|\) = -1 – 6 = – 7
and |B| = \(\left|\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right|\) = 1 + 3 = 4
∴ |AB| = |A|.|B| = (-7)(4) = -28

Question 6.
In the interval it π/2 < x < π, find the value of x for which the matrix \(\left[\begin{array}{cc}
2 \sin x & 3 \\
1 & 2 \sin x
\end{array}\right]\) is singular. (All India 2015C)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 3

Question 7.
If \(\left|\begin{array}{rr}
2 x & 5 \\
8 & x
\end{array}\right|=\left|\begin{array}{rr}
6 & -2 \\
7 & 3
\end{array}\right|\), then write the value of x. (Delhi 2014)
Answer:
First, expand both determinants, which gives ” equation in x and then solve that equation to find the value of x.
Given, \(\left|\begin{array}{rr}
2 x & 5 \\
8 & x
\end{array}\right|=\left|\begin{array}{rr}
6 & -2 \\
7 & 3
\end{array}\right|\)
⇒ 2x 2 – 40 = 18 -(-14)
⇒ 2x 2 – 40 = 32
⇒ 2x 2 = 72
⇒ x 2 = 36
∴ x = ± 6

Question 8.
If = \(\left|\begin{array}{cc}
3 x & 7 \\
-2 & 4
\end{array}\right|=\left|\begin{array}{cc}
8 & 7 \\
6 & 4
\end{array}\right|\), then find the value of x. (All India 2014)
Answer:
Given, \(\left|\begin{array}{cc}
3 x & 7 \\
-2 & 4
\end{array}\right|=\left|\begin{array}{cc}
8 & 7 \\
6 & 4
\end{array}\right|\)
x = -2

Question 9.
Write the value of the determinant (Delhi 2014C)
\(\left|\begin{array}{cc}
p & p+1 \\
p-1 & p
\end{array}\right|\)
Answer:
Let Δ = \(\left|\begin{array}{cc}
p & p+1 \\
p-1 & p
\end{array}\right|\)

On expanding, we get
Δ = p 2 – (p – 1)(p + 1)
⇒ Δ = p 2 – (p 2 – 1 2 ) [∵ a 2 – b 2 =(a + b) (a – b)]
⇒ Δ = p 2 – p 2 + 1
∴ Δ = 1

Question 10.
If \(\left|\begin{array}{cc}
2 x & x+3 \\
2(x+1) & x+1
\end{array}\right|=\left|\begin{array}{ll}
1 & 5 \\
3 & 3
\end{array}\right|\), then find the value of x. (Delhi 2013C)
Answer:
Expand both determinants which gives equation in x and then solve that equation to find the value of x.
Given, \(\left|\begin{array}{cc}
2 x & x+3 \\
2(x+1) & x+1
\end{array}\right|=\left|\begin{array}{ll}
1 & 5 \\
3 & 3
\end{array}\right|\)
⇒ 2x (x +1) – (x + 3) (2x + 2) = 3 – 15
⇒ 2x 2 + 2x – (2x 2 + 8x + 6) = -12
⇒ – 6x – 6 =-12 ⇒ 6x = 6
∴ x = 1

Question 11.
If \(\left|\begin{array}{ll}
x+1 & x-1 \\
x-3 & x+2
\end{array}\right|=\left|\begin{array}{cc}
4 & -1 \\
1 & 3
\end{array}\right|\), then write the value of x. (Delhi 2013)
Answer:
Given, \(\left|\begin{array}{ll}
x+1 & x-1 \\
x-3 & x+2
\end{array}\right|=\left|\begin{array}{cc}
4 & -1 \\
1 & 3
\end{array}\right|\)
∴ x = 2

Question 12.
If A ij is the cofactor of the element a of the determinant \(\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|\), then write the value of a 32 . A 32 . (All India 2013)
Answer:
Let Δ = \(\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|\)
Here, a 32 = 5
Given, A ij is the cofactor of the element a ij of A.
∴ A 32 = (-1) 3+2 \(\left|\begin{array}{ll}
2 & 5 \\
6 & 4
\end{array}\right|\) = -1(8 – 30) = 32
⇒ a 32 . A 32 = 5 × 32 = 110

Question 13.
If Δ = \(\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|\), write the cofactor of a 23 . (Delhi 2012)
Answer:
Cofactor of element a 32
= (-1) 3+2 \(\left|\begin{array}{ll}
5 & 8 \\
2 & 1
\end{array}\right|\) = (-1)(5 – 16) = 11

Question 14.
If Δ = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 1 \\
5 & 3 & 8
\end{array}\right|\), write the minor of element a 22 . (Delhi 2012)
Answer:
Minor of elements a 22 = \(\left|\begin{array}{ll}
1 & 3 \\
5 & 8
\end{array}\right|\) = 8 – 15 = -7

Question 15.
If Δ = \(=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|\), then write the minor of the element a 23 . (Delhi 2012)
Answer:
Minor of the elements a 23 = \(\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right|\) = 10 – 3 = 7

Question 16.
For what value of x, A = \(\left[\begin{array}{cc}
2(x+1) & 2 x \\
x & x-2
\end{array}\right]\) is a singular matrix? (All India 2011C)
Answer:
For a singular matrix, |A| = 0. Use this relation and solve it.
We know that, a matrix A is said to be singular, if |A| = 0
∴ \(\left[\begin{array}{cc}
2(x+1) & 2 x \\
x & x-2
\end{array}\right]\) = 0
⇒ (2x + 2)(x – 2) – 2x 2 = 0
⇒ 2x 2 – 2x – 4 – 2x 2 = 0
⇒ -2x = 4
∴ x = -2

Question 17.
For what value of x, the matrix \(\left[\begin{array}{cc}
2 x+4 & 4 \\
x+5 & 3
\end{array}\right]\) is a singular matrix? (All India 2011C)
Answer:
Let, A = \(\left[\begin{array}{cc}
2 x+4 & 4 \\
x+5 & 3
\end{array}\right]\)
If matrix A is singular, then
|A| = 0
⇒ \(\left|\begin{array}{cc}
2 x+4 & 4 \\
x+5 & 3
\end{array}\right|\) = 0
⇒ (2x + 4) × 3 – (x + 5) × 4 = 0
⇒ 6x + 12 – 4x – 20 = 0 ⇒ 2x = 8
∴ x = 4

Question 18.
For what value of x, the matrix \(\left[\begin{array}{cc}
2 x & 4 \\
x+2 & 3
\end{array}\right]\) is a singular matrix? (Delhi 2011C)
Answer:
Given, A = \(\left[\begin{array}{cc}
2 x & 4 \\
x+2 & 3
\end{array}\right]\)
∴ x = 4

Question 19.
For what value of x, matrix \(\left[\begin{array}{ll}
6-x & 4 \\
3-x & 1
\end{array}\right]\) is a singular matrix? (Delhi 2011C)
Answer:
Given A = \(\left[\begin{array}{ll}
6-x & 4 \\
3-x & 1
\end{array}\right]\)
∴ x = 2

Question 20.
For what value of x, the matrix \(\left[\begin{array}{cc}
5-x & x+1 \\
2 & 4
\end{array}\right]\) is a singular? (Delhi 2011)
Answer:
Given A = \(\left[\begin{array}{cc}
5-x & x+1 \\
2 & 4
\end{array}\right]\)
∴ x = 3

Question 21.
Evaluate \(\left|\begin{array}{cc}
\cos 15^{\circ} & \sin 15^{\circ} \\
\sin 75^{\circ} & \cos 75^{\circ}
\end{array}\right|\). (All India 2011)
Answer:
Let Δ = \(\left|\begin{array}{cc}
\cos 15^{\circ} & \sin 15^{\circ} \\
\sin 75^{\circ} & \cos 75^{\circ}
\end{array}\right|\)

On expanding, we get
A = (cos 15° cos 75° – sin 15° sin 75°)
= cos (15° + 75°) [∵ cos x cos y – sin x sin y = cos (x + y)]
= cos 90° = 0 [∵ cos 90° = 0]

Question 22.
If \(\left|\begin{array}{ll}
x & x \\
1 & x
\end{array}\right|=\left|\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right|\), then write the positive value of x. (Foreign 2011; All India 2008C)
Answer:
Given, \(\left|\begin{array}{ll}
x & x \\
1 & x
\end{array}\right|=\left|\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right|\)
On expanding, we get
x 2 – x = 6 – 4
⇒ x 2 – x – 2 = 0
⇒ (x – 2)(x + 1) = 0
∴ x = 2 or -1
Hence, the positive value of x is 2.

Question 23.
What is the value of determinant \(\left|\begin{array}{lll}
0 & 2 & 0 \\
2 & 3 & 4 \\
4 & 5 & 6
\end{array}\right|\) ? (Delhi 2010)
Answer:
Determinant can be easily expand along that row or column which have maximum zeroes.
Let Δ = \(\left|\begin{array}{lll}
0 & 2 & 0 \\
2 & 3 & 4 \\
4 & 5 & 6
\end{array}\right|\)
Then, Δ = -1(12 – 16) [expanding along R 1 ]
= -2(-4) = 8

Question 24.
Find the minor of the element of second row and third column (a 23 ) in the following determinant \(\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|\). (Delhi 2010)
Answer:
Minor of elements a 23 = 13

Question 25.
What positive value of x makes following pair of determinants equal? (All India 2010)
\(\left|\begin{array}{cc}
2 x & 3 \\
5 & x
\end{array}\right|,\left|\begin{array}{cc}
16 & 3 \\
5 & 2
\end{array}\right|\)
Answer:
Let \(\left|\begin{array}{cc}
2 x & 3 \\
5 & x
\end{array}\right|,\left|\begin{array}{cc}
16 & 3 \\
5 & 2
\end{array}\right|\)

On expanding, we get
2x 2 – 15 = 32 – 15
⇒ 2x 2 – 15 = 17
⇒ 2x 2 = 32 ⇒ x 2 = 16 ⇒ x = ± 4
Hence, for x = 4, given pair of determinants is equal.

Question 26.
If A = \(\left[\begin{array}{ll}
p & 2 \\
2 & p
\end{array}\right]\) and |A 3 | = 125 then find the value of p. (All India 2019)
Answer:
Given, A = \(\left[\begin{array}{ll}
p & 2 \\
2 & p
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
p & 2 \\
2 & p
\end{array}\right|\) = p 2 – 4
and |A 3 | = 125 ⇒ |A| 3 = 125 [∵ |A| 3 = |A 3 |]
⇒ (p 2 – 4) 3 = 125 ⇒ p 2 – 4 = 5 ⇒ p 2 = 9
⇒ p = ± 3

Properties of Determinants

Question 1.
If A is a square matrix satisfying A’A = I, write the value of |A|. (All India 2019)
Answer:
We have, A’A = I
⇒ |A’A| = |I| ⇒ |A’||A| = 1 [∵ | AB| = |A| |B|]
⇒ |A| 2 = 1 [∵ |A’| = |A|]
⇒ |A| = ± 1

Question 2.
If A and B are square matrices of the same order 3, such that |A| = 2 and AB = 27. Write the value of |B|. (Delhi 2019)
Answer:
We know that,
(i) |kA| = k n |A|, if A is square matrix of nth order
(ii) |AB| = |A| × |B|
Here, we have AB = 21 and n – 3
∴ |AB| = |2I| = 2 3 |I|= 8.1 = 8 [∵|I| = 1]
⇒ |4||B| = 8
⇒ 2.|B| = 8 ⇒ |B|=4

Question 3.
Write the value of Δ = \(\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3
\end{array}\right|\). (All India 2015)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 4
On taking (x + y + z) common from R 1 and -3
Δ = (x + y + z)(-3)\(\left|\begin{array}{lll}
1 & 1 & 1 \\
z & x & y \\
1 & 1 & 1
\end{array}\right|\)
= (x + y + z)(-3) × 0 [∵ R 1 and R 3 are identical]
= 0

Question 4.
Write the value of \(\left|\begin{array}{lll}
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|\). (All India 2014C)
Answer:
Let Δ = \(\left|\begin{array}{lll}
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|\)
On applying C 3 → C 3 – 9C 2 , we get
Δ = \(\left|\begin{array}{lll}
2 & 7 & 2 \\
3 & 8 & 3 \\
5 & 9 & 5
\end{array}\right|\)
= 0 [∵ C 1 and C 3 are identical]

Question 5.
Let A be a square matrix of order 3 × 3. Write the value of |2A|, where |A| = 4. (All India 2012)
Answer:
We know that, for a square matrix A of order n,
|kA| = k n – |A|
Here, |2A| = 2 3 .|A| [∵ order of A is 3 × 3]
= 2 3 × 4= 8 × 4 = 32 [put |A| = 4]

Question 6.
If the determinant of matrix A of order 3 × 3 is of value 4, then write the value of |3A|. (All India 2012C)
Answer:
We know that, for a square matrix A of order n,
|kA| = k n – |A|
Here, |3A| = 3 3 .|A| [∵ order of A is 3 × 3]
= 108

Question 7.
Write the value of the determinant \(\left|\begin{array}{ccc}
102 & 18 & 36 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|\) (Foreign 2012)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 5

Question 8.
If A is a square matrix of order 3 and |3A| = k|A|, then write the value of k. (Delhi 2010)
Answer:
We know that, if A is a square matrix of order n. Then, |pA|= p n |A|
Here, the matrix A is of order 3 × 3.
∴ |3A| = (3) 3 |A| = 27|A|
On comparing with given equation, we get
k = 27

Question 9.
What is the value of \(\left|\begin{array}{lll}
4 & a & b+c \\
4 & b & c+a \\
4 & c & a+b
\end{array}\right|\)?
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 6

Question 10.
Using properties of determinants, show that (All India 2019)
\(\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|\) = 3(a + 6 + c) (ab + be + ca)
Answer:
Let the given determinant be A. Then,
Determinants Class 12 Maths Important Questions Chapter 4 7
= (a + b + c) [(2b + a) (2c + a) – (a – c) (a – b)]
= (a + b + c) [(abc + 2ab + 2ac + a 2 ) – (a 2 – ab – ac + bc)]
= 3(a + b + c) (ab + bc + ca)
Hence, Δ = 3(a + b + c) (ab + bc + ca)

Question 11.
Using properties of determinants, prove the following (Delhi 2019)
\(\left|\begin{array}{ccc}
a+b+c & -c & -b \\
-c & a+b+c & -a \\
-b & -a & a+b+c
\end{array}\right|\) = 2(a + b) (b + c) (c + a)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 8
= (a + b) (b + c) [1 {2(c + a) – 0}]
= 2(a+b)(b + c) (c + a) = RHS

Question 12.
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
a^{2}+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\) = (a – 1) 3
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 9
On expanding along C 3 , we get
LHS = (a – 1) 2 1 (a +1 – 2)
= (a – 1) 2 (a – 1) = (a – 1) 3
= RHS
Hence Proved.

Question 13.
Using properties of determinants, prove that (CBSE 2018)
\(\left|\begin{array}{ccc}
1 & 1 & 1+3 x \\
1+3 y & 1 & 1 \\
1 & 1+3 z & 1
\end{array}\right|\) = 9 (3xyz + xy + yz + zx).
Answer:
Let Δ = \(\left|\begin{array}{ccc}
1 & 1 & 1+3 x \\
1+3 y & 1 & 1 \\
1 & 1+3 z & 1
\end{array}\right|\)
On taking common x from R 1 , ,y from R 2 and z from R 3 we get
Determinants Class 12 Maths Important Questions Chapter 4 10
= (3xyz + xy + yz + zx)[1 – {0 – (-9)}]
= 9(3xy + xy + yz + zx)
= RHS
Hence Proved.

Question 14.
Using properties of determinants, prove that (CBSE 2018C)
\(\left|\begin{array}{ccc}
5 a & -2 a+b & -2 a+c \\
-2 b+a & 5 b & -2 b+c \\
-2 c+a & -2 c+b & 5 c
\end{array}\right|\) = 12 (a + b + c) (ab + bc + ca).
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 11
[Applying R 2 → R 2 – R 1 and R 3 → R 3 – R 1 ]
Expanding along C 1 , we get
= (a + b + c)[1{(4b + 2a)(4c + 2a) – (-2b + 2a)(-2c + 2a) = 0 = 0]
= (a + b + c)[4{(2b + a)(2c – a) – (-b + a)(-c + a)]
(a + b + c)4[{4bc + 2ab + 2ac + a 2 – (bc – ab – ac + a 2 )
= 4(a + b + c)[3bc + 3ab + 3ac]
= 12(a + b + c)(ab + bc + ca0
Hence Proved.

Question 15.
Using properties of determinants, prove that (Delhi 2017: All India 2017)
\(\left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right|\) = 9y 2 (x + y).
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 12
Now, on expanding along Rv we get
LHS = 3 (x + y) -1 . [(- 2y) . (-y) – (y) . <-y>]
= 3 (x + y) (2y 2 + y 2 )
= 3 (x + y) (3y 2 )
= 9y 2 (x + y) = RHS
Hence proved.

Question 16.
If f(x) = \(\left|\begin{array}{ccc}
a & -1 & 0 \\
a x & a & -1 \\
a x^{2} & a x & a
\end{array}\right|\) using properties of determinants, find the value of f(2x) – f(x). (Delhi 2015)
Answer:
First, expand the determinants by using properties and then determine the required result.
Determinants Class 12 Maths Important Questions Chapter 4 13
Now, on expanding along R 1 , we get
f(x) = a[1 { a(x + a) + 1 (x 2 + ax)}]
= a (ax + a 2 + x 2 + ax)
= a (x 2 + 2ax + a 2 )
= a(x + a) 2

f(2x) = a(2x + a) 2
Now, f(2x) – f(x) = a(2x + a) 2 – a(x + a)
= a[(2x + a) 2 – (x + a) 2 ]
= a[(2x + a + x + a) (2x + a – x – a)] [∵ (a + b) (a – b) = a 2 – b 2 ]
= a[(3x + 2a) (x)]
= x(3x + 2a) a

Question 17.
Using properties of determinants, prove that (Foreign 2015, 2009)
\(\left|\begin{array}{ccc}
1 & a & a^{2} \\
a^{2} & 1 & a \\
a & a^{2} & 1
\end{array}\right|\) = (1 – a 3 ) 2
Or
Using properties of determinants, prove the following.
\(\left|\begin{array}{ccc}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|\) = (1 – x 3 ) 2
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 14
On taking (1 – a) common from C 1 , and C 2 respectively, we get
LHS = (1 + a + a 2 ) (1 – a) 2 \(\left|\begin{array}{cc}
1 & a \\
-a & 1+a
\end{array}\right|\)
= (1 + a + a 2 ) (1 – a) 2 (1 + a + a 2 )
= {(1 + a + a 2 )(1 – a)} 2
= (1 – a 3 ) 2
= RHS
[∵ (a 2 + b 2 + ab){a – b) = a 3 – b 3 ]

Question 18.
Using properties of determinants, prove that (All Indio 2015; Foreign 2014)
\(\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|\) = 4a 2 b 2 bc 2
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 15
On expanding along C 1 , we get
LHS = abc [2b {c {a – c) + c(a + c)}]
= 2(ab 2 c) (2ac)
= 4a 2 b 2 c 2 = RHS
Hence proved.

Question 19.
Using properties of determinants, solve the following for x. (All Indio 2015C, 2011)
\(\left|\begin{array}{lll}
a+x & a-x & a-x \\
a-x & a+x & a-x \\
a-x & a-x & a+x
\end{array}\right|\) = 0
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 16
On Expanding along C 1 , we get
(3a – x).1.\(\left|\begin{array}{cc}
2 x & 0 \\
0 & 2 x
\end{array}\right|\) = 0
⇒ (3a – x).2x.2x = 0
⇒ 4x 2 (3a – x) = 0
∴ x = 0,3a

Question 20.
Using properties of determinants, prove that (Delhi 2015C)
\(\left|\begin{array}{lll}
(a+1)(a+2) & a+2 & 1 \\
(a+2)(a+3) & a+3 & 1 \\
(a+3)(a+4) & a+4 & 1
\end{array}\right|\) = 2
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 17
Now, on expanding along C3, we get
LHS = 4 (a + 2) – 4a – 10= 4a + 8 – 4a – 10
= – 2 = RHS
Hence proved.

Question 21.
Prove the following, using properties of determinants.
\(\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|\) = 2(a + b + c) 3 [Delhi 2014]
Or
Prove, using properties of determinants
\(\left|\begin{array}{ccc}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right|\) = 2(x + y + z) 3 . (F0reiqn 2011; All India 2009C, 2008)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 18
On taking(a + b + c) common from R 2 and R 3 we get
LHS = 2 (a+b + c) 3 \(\left|\begin{array}{lll}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
On expanding along R 3 , we get
LHS = 2(a + b + c) 3 (1 – 0)
= 2(a + b + c) 3 = RHS
Hence Proved
Or
Same as Above.

Question 22.
Using properties of determinants, prove that (Delhi 2014)
\(\left|\begin{array}{ccc}
x^{2}+1 & x y & x z \\
x y & y^{2}+1 & y z \\
x z & y z & z^{2}+1
\end{array}\right|\) = 1 + x 2 + y 2 + z 2 .
Or
Prove, using properties of determinants (All India 2011C; ForeIgn 2009)
\(\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|\) = 1 + a 2 + b 2 + c 2 .
Answer:
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 19
On expanding along C 1 , we get
LHS = (1 + x 2 + y 2 + z 2 )[1 (1 – 0)]
= 1 + x 2 + y 2 + z 2 = RHS
Hence proved.

Note: If we divide any row (or column) by a non-zero constant k, then we have to multiply the determinant by k.
or
Same as Above

Question 23.
Using properties of determinants, prove that (Delhi 2014)
\(\left|\begin{array}{ccc}
2 y & y-z-x & 2 y \\
2 z & 2 z & z-x-y \\
x-y-z & 2 x & 2 x
\end{array}\right|\) = (x + y + z) 3
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 20
Now, on expanding along we get
LHS = (x + y + z) 1 . [0 + (x + y + z) 2 ]
= (x + y+ z) 3 = RHS
Hence Proved.

Question 24.
Using properties of determinants, prove that (All India 2014, 2010C)
\(\left|\begin{array}{ccc}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right|\) = 2\(\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|\)
Answer:
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 21

Question 25.
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\) = abc + bc + ca + ab (All India 2014, 2009)
Answer:
T0 Prove
Determinants Class 12 Maths Important Questions Chapter 4 22

Question 26.
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right|\) = x 3 (All India 2014, 2009)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 23

Question 27.
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|\) = a 2 (a + x + y + z) (F0reign 2014)
Answer:
First, we apply the operation C 1 → C 1 + C 2 + C 3 and then take (a + x + y + z) common factor from C,. Now, try to make two zeroes in C 1 , and expand the determinant along C 1 .
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 24
On expanding along C 1 , we get
= (a + x + y + z)[1 (a 2 – 0)]
= a 2 (a + x + y + z) = RHS
Hence Proved.

Question 28.
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
x+\lambda & 2 x & 2 x \\
2 x & x+\lambda & 2 x \\
2 x & 2 x & x+\lambda
\end{array}\right|\) = (5x + λ)(λ – x) 2 (F0reign 2014)
Or
Using properties of determinants, prove that
\(\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|\) = (5x + 4)(4 – x) 2 (Delhi 2011, 2009)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 25
On expanding along C 1 , we get
LHS = (5x + λ)[1(λ – x) 2 – 0]
= (5x + λ)(λ – x) 2
= RHS
Hence Proved
Or
Same as Above.

Question 29.
Using properties of determinants, prove that
\(\left|\begin{array}{lll}
a & a^{2} & b c \\
b & b^{2} & c a \\
c & c^{2} & a b
\end{array}\right|\) = (a – b)(b – c)(c – a) (bc + ca + ab) (Delhi 2014C)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 26
Determinants Class 12 Maths Important Questions Chapter 4 27
On taking common (c – b) from R 2 , we get
LHS = (b – a) (c – a) (c – b)
= (b – a) (c – a) (c – b)\(\left|\begin{array}{cc}
b+a & b^{2}+a^{2}+a b \\
1 & c+b+a
\end{array}\right|\)
= (b – a)(c – a)(c – b) [(b + a) (c + b + a) – a 2 – b 2 – ab]
= (b – a)(c – a)(c – b)[bc + b 2 + ab + ac + ab + a 2 – a 2 – b 2 – ab]
= (a – b) (b – c) (c – a) (ab + bc + ca)
= RHS
Hence proved.

Question 30.
Show that Δ = Δ 1 , where (All India 2014C)
Determinants Class 12 Maths Important Questions Chapter 4 28
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 29

Question 31.
Using properties of determinants, prove that (All India 2014C, 2012)
\(\left|\begin{array}{ccc}
b+c & a & a \\
b & c+a & b \\
c & c & a+b
\end{array}\right|\) = 4abc
Answer:
First, apply R 1 → R 1 + R 2 + R 3 and then take a term common from R 1 and solve it.
Determinants Class 12 Maths Important Questions Chapter 4 30
On expanding along R 1 , we get
LHS = 2{c(ab – 0) – b(0 – ac)}
= 2{abc + abc}
= 4abc
= RHS
Hence Proved

Question 32.
Using properties of determinants, prove that
\(\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|\) = (a – b)(b – c)(c – a)(a + b + c). (Delhi 2013C, 2009C)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 31
= (b – a)(c – a)[c 2 + a 2 + ac – (b 2 + a 2 + ab)] [expanding along C 1 ]
= (b – a) (c – a) [c 2 – b 2 + ac – ab]
= (b – a)(c – a) [(c – b)(c + b) + a (c – b)]
= (b – a)(c -a)(c – b)(c + b + a)
= (a – b)(b – c)(c – a)(a + b+ c)
= RHS
Hence proved.

Question 33.
Using properties of determinants, prove that (All India 2013C, Delhi 2011C)
\(\left|\begin{array}{ccc}
a & b & c \\
a^{2} & b^{2} & c^{2} \\
b c & c a & a b
\end{array}\right|\) = (a – b)(b – c)(c – a)(ab + bc + ca)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 26
Determinants Class 12 Maths Important Questions Chapter 4 27
On taking common (c – b) from R 2 , we get
LHS = (b – a) (c – a) (c – b)
= (b – a) (c – a) (c – b)\(\left|\begin{array}{cc}
b+a & b^{2}+a^{2}+a b \\
1 & c+b+a
\end{array}\right|\)
= (b – a)(c – a)(c – b) [(b + a) (c + b + a) – a 2 – b 2 – ab]
= (b – a)(c – a)(c – b)[bc + b 2 + ab + ac + ab + a 2 – a 2 – b 2 – ab]
= (a – b) (b – c) (c – a) (ab + bc + ca)
= RHS
but replace row operations by column operations and column operations by row operations otherwise write LHS
\(\left|\begin{array}{ccc}
a & b & c \\
a^{2} & b^{2} & c^{2} \\
b c & c a & a b
\end{array}\right|=\left|\begin{array}{ccc}
a & a^{2} & b c \\
b & b^{2} & c a \\
c & c^{2} & a b
\end{array}\right|\)

Question 34.
Using properties of determinants, prove that (Delhi 2012)
Determinants Class 12 Maths Important Questions Chapter 4 32
Answer:
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 21
but replace column operations by row operations. Otherwise write
Determinants Class 12 Maths Important Questions Chapter 4 33

Question 35.
Using properties of determinants, prove the following (Delhi 2012, 2011C)
\(\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|\) = (a – b)(b – c)(c – a)(a + b + c)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 31
= (b – a)(c – a)[c 2 + a 2 + ac – (b 2 + a 2 + ab)] [expanding along C 1 ]
= (b – a) (c – a) [c 2 – b 2 + ac – ab]
= (b – a)(c – a) [(c – b)(c + b) + a (c – b)]
= (b – a)(c -a)(c – b)(c + b + a)
= (a – b)(b – c)(c – a)(a + b+ c)
= RHS
but replace column operations by row operations and row operations by column operations. Otherwise write
LHS = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|\)

Question 36.
Using properties of determinants, prove the following (Delhi 2019, 2012C, 2009)
\(\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|\) = a 3 + b 3 + c 3 – 3abc
Answer:
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 34
On expanding along R 1 , we get
LHS = (a + b+ c).1.{(2b – a – c)(a – c) – (a – b)(b +c – 2a)}
= (a + b + c){2ab – a 2 – ac – 2bc + ac + c 2 – ab – ac + 2a 2 + b 2 + bc – 2ab}
=(a+ b + c)(a 2 + b 2 + c 2 – ab – bc – ca)
= a 3 + b 3 + c 3 – 3abc

Question 37.
Using properties of determinants, prove the following (All India 2012C)
\(\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|\) = (a + b + c)(a 2 + b 2 + c 2 )
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 35

Question 38.
Using properties of determinants, prove that (Delhi 2012C, 2010C, 2008C)
\(\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \alpha+\beta
\end{array}\right|\) = (α – β)(β – γ)(γ – α)(α + β + γ)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 36
Now, on expanding along R 3 , we get
LHS = (α + β + γ)(α – β)(β – γ)\(\left|\begin{array}{cc}
1 & 1 \\
\alpha+\beta & \beta+\gamma
\end{array}\right|\)
= (α + β + γ)(α – β)(β – γ)(β + γ – α – β)
= (α – β)(β – γ)( γ – α)(α + β + γ)
= RHS
Hence Proved.

Question 39.
Using properties of determinants, prove that (All India 2012C)
\(\left|\begin{array}{lll}
a^{2} & a^{2}-(b-c)^{2} & b c \\
b^{2} & b^{2}-(c-a)^{2} & c a \\
c^{2} & c^{2}-(a-b)^{2} & a b
\end{array}\right|\) = (a – b)(b – c)(c – a)(a + b + c)(a 2 + b 2 + c 2 )
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 37
Now, on Expanding along C 2 , we get
LHS = (a 2 + b 2 + c 2 )(a – b)(b – c)(-1) 3+2 (a + b + c)(-a + c)
= (a – b)(b – c)(c – a)(a + b + c)(a 2 + b 2 +c 2 )
= RHS
Hence Proved.

Question 40.
Using properties of determinants, prove that (Delhi 2011; All India 2011C)
\(\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|\) = 4a 2 b 2 c 2
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 38

Question 41.
Using properties of determinants, prove that (Delhi 2011; All India 2011C)
\(\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|\) = xyz(x – y)(y – z)(z – x)
Answer:
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 39
On taking (x – y) common from C 1 and (y – z) from C 2 , we get
LHS = xyz(x – y)(y – z)\(\left|\begin{array}{cc}
1 & 1 \\
x+y & y+z
\end{array}\right|\)
= xyz(x – y)(y – z)[(y + z) – (x + y)]
= xyz(x – y)(y – z)(z – x)
= RHS
Hence Proved.

Question 42.
Using properties of determinants, solve the following for x. (Delhi 2011, 2010C)
Determinants Class 12 Maths Important Questions Chapter 4 40
Answer:
First, apply some properties, so that when we expand the determinant, it is easy to simplify.
Given,
Determinants Class 12 Maths Important Questions Chapter 4 41
On expanding along Cj, we get
⇒ 4 [3 (3x – 64) – 12 (2x – 27) + (x – 8) (3 × 2 – 3 × 6)] = 0
⇒ 4[9x – 192 – 24x + 324 + (x – 8)18] = 0
⇒ 4(3x – 12) = 0
⇒ 3x = 12
∴ x = 4

Question 43.
Using properties of determinants, solve the following for x. (All India 2011)
Determinants Class 12 Maths Important Questions Chapter 4 42
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 43
On expanding along C 1 , we get
(3x + a)[1(a × a – 0)] = 0
⇒ a 2 (3x + a) = 0
∴ x = \(-\frac{a}{3}\)

Question 44.
Prove, using properties of determinants (Foreign 2011)
Determinants Class 12 Maths Important Questions Chapter 4 44
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 20
Now, on expanding along we get
LHS = (x + y + z) 1 . [0 + (x + y + z) 2 ]
= (x + y+ z) 3 = RHS
Hence Proved.

Question 45.
Prove, using properties of determinants (Foreign 2011)
Determinants Class 12 Maths Important Questions Chapter 4 45
Answer:
First, we apply the operation C 1 → C 1 + C 2 + C 3 and then take (a + x + y + z) common factor from C,. Now, try to make two zeroes in C 1 , and expand the determinant along C 1 .
To Prove
Determinants Class 12 Maths Important Questions Chapter 4 24
On expanding along C 1 , we get
= (a + x + y + z)[1 (a 2 – 0)]
= a 2 (a + x + y + z) = RHS
Hence Proved.

Question 46.
Prove that
Determinants Class 12 Maths Important Questions Chapter 4 46
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 47
On expanding along R1, we get
LHS = (a + b + c) 2 [2bc(a 2 + ab + ac + bc – bc)]
= (a + b + c) 2 [2bc (a 2 + ab + ac)]
= (a + b + c) 2 .2abc(a + b+c)
= 2abc(a + b + c) 3 = RHS
Hence Proved.

Question 47.
Prove that
Determinants Class 12 Maths Important Questions Chapter 4 48
is divisible by (x + y + z) and hence find the quotient. (Delhi 2016)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 49
On expanding along R 1 , we get = (x + y + z) 2 (xy + xz + yz – x 2 – y 2 – z 2 ) [1{(y – z)(z – y) – (y – x)(z – x)}]
= (x + y + z) 2 (xy + xz + yz – x 2 – y 2 – z 2 ) x [-(y 2 + z 2 – 2yz) – (yz – xy – xz + x 2 )]
= (x + y + z) 2 (xy + xz + yz – x 2 – y 2 – z 2 ) x [yz + xy + xz – x 2 – y 2 – z 2 ]
⇒ Δ = (x + y + z) 2 (xy + xz + yz – x 2 – y 2 – z 2 ) 2
Here, we see that A is a multiple of x + y + z.
So, it is divisible by x + y + z.
Hence, the quotient is (x + y + z)(xy + xz + yz + x 2 – y 2 – z 2 ) 2

Question 48.
Using properties of determinants, prove that (All India 2015)
Determinants Class 12 Maths Important Questions Chapter 4 50
Or
Using properties of determinants, show the following (Delhi 2010)
Determinants Class 12 Maths Important Questions Chapter 4 51
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 52

Question 49.
Using properties of determinants, show that ΔABC is isosceles, if (All India 2016)
Determinants Class 12 Maths Important Questions Chapter 4 53
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 54
On expanding along R 1 , we get (cosB – cos A) (cos C- cos A)[1 + cosA + cos C – 1 – cos A – cosB] = 0
⇒ (cosB – cosA) (cosC – cosA) (cosC – cosB) = 0
cosB = cosA or cosC=cosA
or cosC = cosB
⇒ ∠B = ∠A
or ∠C = ∠A
or ∠C = ∠B
ΔABC is isosceles.

Question 50.
If a, b and c are all non-zero and
Determinants Class 12 Maths Important Questions Chapter 4 55
then, prove that \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) + 1 = 0 (Foreign 2016)
Answer:
Consider \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\) = 0 and
T0 Prove
Determinants Class 12 Maths Important Questions Chapter 4 22
From this, we get abc(1 + \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) = 0
1 + \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = 0
[∵ a, b and c are all non-zero constants]

Question 51.
If a, b, c are positive and unequal, show that the following determinant is negative. (All India 2010)
Δ = \(\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|\)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 56
On expanding along R 1 , we get
A = (a + b + c) [- (b – c) 2 – (a – b) (a – c)]
= (a + b + c) [- (b 2 + c 2 – 2bc) – (a 2 – ac – ab + bc)]
= (a + b + c)[-b 2 – c 2 + 2bc – a 2 + ac +ab – bc]
= (a + b + c) (ab + bc + ca – a 2 – b 2 – c 2 )
= – (a + b + c)(a 2 + b 2 + c 2 – ab – bc – ca)
= \(\frac{1}{2}\) (a + b + c) (2a 2 + 2b 2 + 2c 2 – 2ab – 2bc – 2ca) [multiplying and divide by 2]
= \(\frac{1}{2}\) (a + b+ c){(a – b) 2 + (b – c) 2 + (c – a) 2 } < 0 [∵ a, b, c > 0 and a ≠ b ≠ c]
Hence Proved.

Question 52.
Using properties of determinants, prove the following. (All India 2010)
\(\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|\) = (1 + pxyz) (x – y)(y- z) (z – x)
Answer:
To Prove \(\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|\)
= (1 + pxyz)(x – y)(y – z)(z – x)
Determinants Class 12 Maths Important Questions Chapter 4 57
[taking common p from C 3 , x from R 1 y from R 2 and z from R 3 in 2nd determinant]
On interchanging C 1 and C 3 is 1st determinant, we get
Determinants Class 12 Maths Important Questions Chapter 4 58

Adjoint and Inverse of a Matrix

Question 1.
If for any 2 × 2 square matrix A, A(adj A) = \(\left[\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right]\), then write the value of |A|. (All India 2017)
Answer:
Given, A(adjA) = \(\left[\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right]\)
⇒ |A(adiA)| = \(\left|\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right|\)
⇒ |A||adi(A)| = 64 – 0
⇒ |A| |A| 2 = 64 [∵ |adi A| = |A| n-1 ]
⇒ |A| 2 = 64 ⇒ |A| = ±8

Question 2.
For what values of k the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4 has a unique solutions? (All India 2016)
Answer:
Given, system of linear equations is
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
It can be written in matrix form as
AX = B
Where, A = \(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 2 & k
\end{array}\right]\), X = \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\) and B = \(\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\)

The condition for the system of linear equations has a unique solution, is
A ≠ 0
∴ \(\left|\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 2 & k
\end{array}\right|\) ≠ 0
⇒ 1(k + 2) – 1(2k + 3) + 1(4 – 3) ≠ 0
⇒ k + 2 – 2k – 3 + 1 ≠ 0 ⇒ -k ≠ 0
∴ k ≠ 0
Hence, for a unique solution k should be a non-zero real number.

Question 3.
Find |adj A|, if A = \(\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]\). (Delhi 2014C)
Answer:
Given, A = \(\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]\)
Clearly, |A| = \(\left|\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right|\) = 15 – 14 = 1

We know that, if A is a non-singular matrix of order n, then |adj (A) | = |A| n-1
∴ |adj(A)| = |A| 2-1 ⇒ |adj(A) | = (1) 2-1 = 1

Question 4.
If A is a square matrix of order 3 such that |adjA| = 64,then find |A|. (Delhi 2013C)
Answer:
We know that, for a square matrix of order n,
|adj (A)|= |A| n-1
Here, the order of A is 3 × 3 therefore n- 3
Now, |adj (A)| =|A| 3-1 = |A| 2
Given, |adj (A)|= 64 ⇒ 64 =|A| 2
⇒ (8) 2 = |A| 2
⇒ |A| = ±8 [taking square root]

Question 5.
Write A -1 for A = \(\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right]\) (Delhi 2011)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 59

Question 6.
If A = \(\left[\begin{array}{rr}
2 & 3 \\
5 & -2
\end{array}\right]\), then write A in terms of A. (All India 2011)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 60

Question 7.
Write the adjoint of the following matrix.
\(\left[\begin{array}{cc}
2 & -1 \\
4 & 3
\end{array}\right]\) (All India 2010)
Answer:
Let A = \(\left[\begin{array}{rr}
2 & -1 \\
4 & 3
\end{array}\right]\), then adj A = \(\left[\begin{array}{ll}
C_{11} & C_{21} \\
C_{12} & C_{22}
\end{array}\right]\), where C ij denotes the cofactor of a ij = \(\left[\begin{array}{rr}
3 & 1 \\
-4 & 2
\end{array}\right]\)

Question 8.
If A = \(\left[\begin{array}{rr}
3 & 1 \\
2 & -3
\end{array}\right]\), then find |adjA|. (Delhi 2010C)
Answer:
Given, A = \(\left[\begin{array}{rr}
3 & 1 \\
2 & -3
\end{array}\right]\)
Clearly |A| = \(\left|\begin{array}{ll}
3 & 1 \\
2 & -3
\end{array}\right|\) = -9 – 3 = -11

We know that, if A is a non-singular matrix of order n, then |adj (A) | = |A| n-1
∴ |adj(A)| = |A| 2-1 ⇒ |adj(A) | = (-11) 2-1 = -11

Question 9.
If |A| = 2 where A is a 2 × 2 matrix, then find |adj A|. (All India 2010C)
Answer:
We know that, for a square matrix of order n,
|adj (A)|= |A| n-1
Here, the order of A is 2 × 2 therefore n = 2
Now, |adj (A)| =|A| 2-1 = |A| 1
Given, |adj (A)|= 4 ⇒ 4 =|A| 2
⇒ (2) 2 = |A| 2
⇒ |A| = ±2 [taking square root]

Question 10.
Given A = \(\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right]\), compute A and show that 2A -1 = 9I – A (CBSE 2018)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 61

Question 11.
If A= \(\left[\begin{array}{cc}
2 & 3 \\
5 & -2
\end{array}\right]\) be such that A -1 = kA,then L —2J find the value of k. (CBSE 2010C)
Answer:
we get, A -1 = \(\frac{1}{19}\)A
On comparing with A -1 = kA (given), we get
k = \(\frac{1}{19}\)

Question 12.
If A = \(\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 4 \\
-2 & 2 & 1
\end{array}\right]\), then find (A’) -1 . (Delhi 2015)
Answer:
We have, A = \(\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 4 \\
-2 & 2 & 1
\end{array}\right]\)
Now, |A| = \(\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 4 \\
-2 & 2 & 1
\end{array}\right|\)
= 1(-1 – 8) + 2 (0 + 8) + 3(0 – 2) [expanding along R 1 ]
= -9 + 16 – 6 = 1 ≠ 0
So, A is non-singular matrix and its inverse exists.
Cofactors of an element of |A| are given by
Determinants Class 12 Maths Important Questions Chapter 4 62

Question 13.
Find the adjoint of the matrix
A = \(\left[\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right]\) and hence show that A(adj A) = |A|I 3 . (All India 2015)
Answer:
Given, \(\left[\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right]\)
Let A ij be the cofactor of an element a ij of |A|. Then, cofactors of elements of |A| are
Determinants Class 12 Maths Important Questions Chapter 4 63
Clearly, the adjoint of the matrix A is given by
Determinants Class 12 Maths Important Questions Chapter 4 64

Question 14.
If A = \(\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\) and lis the identity matrix of order 2, then show that A 2 = 4A – 3I. Hence, find A -1 . (Foreign 2015)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 65
So, A is non-singular matrix and its inverse exists.
Now, pre-multiplying both sides of Eq. (iii) by A -1 , we get
A -1 .A 2 = A -1 .(4A – 3I)
⇒ (A -1 .A) A = 4A -1 A – 3A -1 .I
⇒ IA = 4I – 3A -1 [∵ A.A -1 = I = A -1 A and A -1 I = A -1 ]
⇒ A = 4I – 3A -1 [∵ IA = A = AI]
⇒ 3A -1 = 4I – A
Determinants Class 12 Maths Important Questions Chapter 4 66

Question 15.
If A = \(\left[\begin{array}{cc}
2 & 3 \\
1 & -4
\end{array}\right]\), B = \(\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]\), verify that (AB) -1 = B -1 A -1 . (All India 2015C)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 67
Thus, A, B and AB are non-singular matrices, so their inverse exists.
Determinants Class 12 Maths Important Questions Chapter 4 68

Question 16.
Show that for the matrix A = \(\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\), A 3 – 6A 2 + 5A + 11I = O. Hence, find A -1 . (All India 2019)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 69
⇒ A 3 – 6A 2 + 5A + 11I 3 = 0
Now, multiplying both sides by A -1 , we get
⇒ A -1 (A 3 – 6A 2 + 5A + 11I 2 ) = A -1 O [multiplying both sides by A -1 ]
⇒ A 2 – 6A + 5I + 11A -1 = 0
Determinants Class 12 Maths Important Questions Chapter 4 70

Question 17.
If A = \(\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2 \\
5 & 1 & 1
\end{array}\right]\), find A -1 . Hence solve the system of equations
x + 3y + 4z = 8
2x + y + 2z = 5
and 5x + y + z = 7. (All India 2019)
Answer:
Here, |A| = \(\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2 \\
5 & 1 & 1
\end{array}\right]\)
= Id – 2) – 3(2-10) + 4(2-5)
= -1 + 24 – 12 = 11 ≠ 0
Thus, A is invertible.
Clearly, the system has a unique solution given by
X = A -1 B.
Now, the cofactors of |A| are
A 11 = -1, A 12 = 8, A 13 = -3
A 21 = 1, A 22 = -19, A 23 = 14
A 31 = 2, A 32 = 6, A 33 = -5
Determinants Class 12 Maths Important Questions Chapter 4 71
The given equations are
x + 3y + 4z = 8 …….(i)
2x + y + 2z = 5 ………(ii)
and 5x + y + z = 7 ………..(iii)
which can be written in matrix form as AX = B,
Determinants Class 12 Maths Important Questions Chapter 4 72

Question 18.
If A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 1
\end{array}\right]\), find A -1 . Hence, solve the system of equations x + y + z = 6, x + 2z = 7, 3x + y + z = 12. (Delhi 2019)
Answer:
We have, A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 1
\end{array}\right]\)
∴ |A| = 1(0 – 2) – 1(1 – 6) + 1(1 – 0)
= -2 + 5 + 1 = 4 ≠ 0
So, A is invertible.
Determinants Class 12 Maths Important Questions Chapter 4 73
Given, systems of the equations is x + y + z = 6, x + 2z = 7, 3x + y + z = 12,
which can be written in matrix form as AX = B where
Determinants Class 12 Maths Important Questions Chapter 4 74

Question 19.
If A =\(\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\), A -1 . Use it to solve the system of equations 2x – 3y + 5z = 11, 3x + 2y – 4z = -5, x + y – 2z = -3. (CBSE 2018)
Answer:
We have, A = \(\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\)
Here |A| = \(\left|\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right|\)
= 2(- 4 + 4) + 3(- 6 + 4) + 5(3 – 2)
= -6+ 5 = -1 ≠ 0
Thus, A is a non-singular matrix, so A -1 exists and the cofactors of elements of |A| are
A 11 = 0, A 21 = -1, A 31 = 2
A 12 = 2, A 22 = -9, A 32 = 23
A 13 = 1, A 23 = -5, A 33 = 13

Question 20.
Given A = \(\left[\begin{array}{lll}
5 & 0 & 4 \\
2 & 3 & 2 \\
1 & 2 & 1
\end{array}\right]\), B -1 = \(\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]\), compute (AB) -1 . (CBSE 2018C)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 75
Determinants Class 12 Maths Important Questions Chapter 4 76

Question 21.
If A = \(\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\), find A -1 . Using A -1 solve the system of equations
\(\frac{2}{x}+\frac{3}{y}+\frac{10}{z}\) = 2
\(\frac{4}{x}-\frac{6}{y}+\frac{5}{z}\) = 5
and \(\frac{6}{x}+\frac{9}{y}-\frac{20}{z}\) – 4
Answer:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q and \(\frac{1}{z}\) = r
Then, the given equations becomes
2p + 3q + 10r =2
4p – 6q + 5r = 5
6p + 9q – 20r = – 4
This system can be written as AX = B, where
Determinants Class 12 Maths Important Questions Chapter 4 77
= 2(120 – 45) – 3(-80 – 30) + 10(36 + 36)
= 150 + 330 + 720 = 1200 ≠ 0
Thus, A is non-singular, therefore its inverse exists.
Therefore, the above system has a unique solution given by
X = A -1 B
Cofactors of A are
A 11 = 75, A 21 =150, A 31 = 75
A 12 =110, A 22 = -100, A 32 = 30
A 13 = 72, A 23 = 0, A 33 = -24
Determinants Class 12 Maths Important Questions Chapter 4 78

Question 22.
Determine the product of \(\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]\) \(\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right]\) and then Use to solve the system of equations
x – y + z = 4
x – 2y – 2z = 9
and 2x + y + 3z = 1. (All India 2017, Delhi 2012C)
Answer:
First, find the product of given matrices and then find the inverse of coefficient matrix by using the obtained product and then by using concept of matrix method, find the values of x, y and z.
Determinants Class 12 Maths Important Questions Chapter 4 79
⇒ BA = 8I
⇒ BA(A -1 ) = 8I.RA -1 [post-multiplying both sides by A’]
⇒ B(AA -1 ) = 8I A -1
⇒ B = 8A -1 [∵ AA -1 = I]
Determinants Class 12 Maths Important Questions Chapter 4 80
On comparing corresponding elements, we get
x = 3, y = – 2 and z = -1

Question 23.
Use Products \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{rrr}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]\)
to solve the system equations
x – y + 2z = 1
2y – 3z = 1
and 3x – 2y + 4z = 2. (Delhi 2017, Foreign 2011)
Answer:
x = 0, y = 5, z = 3

Question 24.
Using elementary transformations, find the inverse of the matrix A = \(\left[\begin{array}{lll}
8 & 4 & 3 \\
2 & 1 & 1 \\
1 & 2 & 2
\end{array}\right]\) and use it to solve the following system of linear equations:
8x + 4y + 3z = 19
2x + y + z = 5
and x + 2y + 2z = 7. (Delhi 2016)
Answer:
Determinants Class 12 Maths Important Questions Chapter 4 81
Determinants Class 12 Maths Important Questions Chapter 4 82
Given system of equations can be written in matrix form as
AX = B,
Determinants Class 12 Maths Important Questions Chapter 4 83
On comparing the corresponding elements, we get
x = 1, y = 2 and z = 1.

Question 25.
If A = \(\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\), find adj A and verify that A(adj A) = (adj A) A = |A|I 3 . (Foregin 2016)
Answer:
We have, A = \(\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\)
Clearly, the cofactors of elements of |A| are given by
A 11 = Cos α; A 12 = -sin α; A 13 = 0
A 21 = Sin ; A 22 = cos ; A 23 = 0
A 31 = 0; A 32 = 0 and A 33 = 1
Determinants Class 12 Maths Important Questions Chapter 4 84
From Eqs. (i), (ii) and (iii), we get
A (adj A) = (adj A) . A = |A|I 3

Question 26.
A total amount of ₹ 7000 is deposited in three different savings bank accounts with annual interest rates of 5%, 8% and 8 \(\frac{1}{2}\) %, respectively. The total annual interest from these three accounts is ₹ 550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices. (Delhi 2014C)
Answer:
Let ₹ x, ₹ y and ₹ z be invested in saving bank accounts at the rate of 5%, 8% and 8\(\frac{1}{2}\)%, respectively.
Then, according to given condition we have the following system of equations
x + y + z = 7000 ……….(i)
and \(\frac{5 x}{100}+\frac{8 y}{100}+\frac{17 z}{200}\) = 550 ……….(ii)
⇒ 10x + 16y + 17z = 110000 ……..(iii)
and x – y = 0 ……….(iv)
This system of equations can be written in matrix form as AX = B
Determinants Class 12 Maths Important Questions Chapter 4 85
So, A is non-singular matrix and its inverse exists.
Now, cofactors of elements of |A| are
Determinants Class 12 Maths Important Questions Chapter 4 86
Determinants Class 12 Maths Important Questions Chapter 4 87
On comparing the corresponding elements, we get x = 1125, y = 1125, z = 4750.
Hence, the amount deposited in each type of account is ₹ 1125, ₹ 1125and ₹ 4750, respectively.

Question 27.
Using matrices, solve the following system of equations.
x – y + 2z = 7
3x + 4y – 5z = – 5
and 2x – y + 3z = 12 (Delhi 2012)
Answer:
First, write the given system of equations in matrix ” form AX = 8. Then, determine the cofactors determinant A and A-1 and then use the relation X = A-1 8, to get the values of x, y and z.
Given, system of equations is
x – y + 2z = 7
3x + 4y – 5z = – 5
and 2x – y + 3z = 12
In matrix form, it can be written as
AX = B ……(i)
Where,
Determinants Class 12 Maths Important Questions Chapter 4 88
Here, |A| = 1 (12- 5) + 1 (9 + 10) + 2(-3- 8)
= 1 (7) + 1 (19) + 2 (-11)
= 7 + 19 – 22 = 4
⇒ |A| ≠ 0
So, A is non-singular and its inverse exists.
Now, cofactors of elements of |A| are
Determinants Class 12 Maths Important Questions Chapter 4 89
Determinants Class 12 Maths Important Questions Chapter 4 90

Question 28.
Using matrices, solve the following system of linear equations. x + y – z = 3, 2x + 3y + z = 10 and 3x – y – 7z = 1 (All India 2012; Delhi 2009C)
Answer:
x = 3, y = 1, z = 1

Question 29.
Using matrices, solve the following system of equations.
3x + 4y + 7z = 4,
2x – y + 3z = – 3
and x + 2y – 3z = 8 (All India 2012)
Answer:
x = 1, y = 2, z = -1

Question 30.
Using matrices, solve the following system of equations.
2x + 3y + 3z = 5, x-2y + z = -4 and 3x – y – 2z = 3 (All India 2012)
Answer:
x = 1, y = 2, z = -1

Question 31.
If A = \(\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 1 & 1 \\
1 & -3 & 1
\end{array}\right]\), then find A -1 and hence solve the system of equations x + 2y + z = 4, -x + y + z = 0 and x – 3y + z = 4. (Delhi 2012C)
Answer:
A -1 = \(\frac{1}{10}\left[\begin{array}{ccc}
4 & -5 & 1 \\
2 & 0 & -2 \\
2 & 5 & 3
\end{array}\right]\)
x = 2, y = 0 and z = 2

Question 32.
Find A -1 , where A = \(\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 3 & 2 \\
3 & -3 & -4
\end{array}\right]\) solve the system of equations, x + 2y – 3z = – 4 2x + 3y + 2z = 2 and 3x – 3y – 4z = 11. (All India 2012C, 2010,2008)
Answer:
A -1 = \(\frac{1}{67}\left[\begin{array}{rrr}
-6 & 17 & 13 \\
14 & 5 & -8 \\
-15 & 9 & -1
\end{array}\right]\)
x = 3, y = -2 and z = 1

Question 33.
Using matrix method, solve the following system of equations. (Delhi 2011)
Determinants Class 12 Maths Important Questions Chapter 4 91
Answer:
First, let \(\frac{1}{x}\) = u, \(\frac{1}{y}\) = v and \(\frac{1}{z}\) = w and then reduce system of equations in terms of u, v and w. Get the values of u, v and w by using matrix method and then find x, y and z from above mentioned substitutions.

The given system of equations is
Determinants Class 12 Maths Important Questions Chapter 4 92
Let \(\frac{1}{x}\) = u, \(\frac{1}{y}\) = v and \(\frac{1}{z}\) = w, then system of x y z equations can be written as
2u + 3v + 10w = 4
4u – 6v + 5w = 1
and 6u + 9v – 20w = 2 …………(i)
Above system of Eqs. (i) can be written in matrix form as AX = B, where
Determinants Class 12 Maths Important Questions Chapter 4 93
Its solution is given by
X = A -1 B …(ii)
Here, |A| = 2 (120 – 45) – 3 (-80 – 30) + 10(36+ 36)
= 2 (75) – 3 (-110) + 10 (72)
= 150 + 330 + 720 = 1200
⇒ |A| = 1200
Since, |A| ≠ 0, so A is non-singular and its inverse exists.
Now, cofactors of elements of |A| are
Determinants Class 12 Maths Important Questions Chapter 4 94
On putting the values X, A -1 and B in Eq. (ii), we get
Determinants Class 12 Maths Important Questions Chapter 4 95

Question 34.
Using matrices, solve the following system of equations.
4x + 3y + 2z = 60
x + 2y + 3z = 45
and 6x + 2y + 3z = 70 (All India 2011)
Answer:
x = 5, y = 8, z = 8

Question 35.
Using matrices, solve the following system of equations. x + 2y + z = 7, x + 3z = 11 and 2x – 3y = 1 (All India 2011; Delhi 2008C)
Answer:
x = 2, y = 1 and z = 3

Question 36.
Using matrices, solve the following system of equations.
x + 2y – 3z = – 4 2x + 3y + 2z = 2 and 3x – 3y – 4z = 11 (All India 2011, 2008)
Answer:
x = 3, y = -2 and z = 1

Question 37.
If A = \(\left[\begin{array}{rrr}
2 & -1 & 1 \\
3 & 0 & -1 \\
2 & 6 & 0
\end{array}\right]\), then find A -1 . Using A -1 , Solve the following system of equations
2x – y + z = -3, 3x – z = 0 and 2x + 6y – z = 2. (All India 2011C)
Answer:
A -1 = \(\frac{1}{32}\left[\begin{array}{rrr}
6 & 6 & 1 \\
-2 & -2 & 5 \\
18 & -14 & 3
\end{array}\right]\); x = \(-\frac{1}{2}\); y = \(\frac{1}{2}\) and z = \(\frac{-3}{2}\)

Question 38.
If A = \(\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & -1 & 1 \\
2 & 0 & -3
\end{array}\right]\), then find A -1 and hence solve the following system of equations
x – 2y + z = 0, -y+z=-2 and 2x – 3z = 10. (All India 2011C)
Answer:
A -1 = \(\left[\begin{array}{rrr}
3 & -6 & -1 \\
2 & -5 & -1 \\
2 & -4 & -1
\end{array}\right]\); x = 2, y = 0 and z = -2

Question 39.
If A = \(\left[\begin{array}{rrr}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{rrr}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right]\) then find AB and hence solve system of equations
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7. (Delhi 2011C)
Answer:
AB = 11I, x = 4, y = -3 and z = 1

Question 40.
If A = \(\left[\begin{array}{rrr}
3 & -4 & 2 \\
2 & 3 & 5 \\
1 & 0 & 1
\end{array}\right]\), then find A -1 and hence solve the following system of equations
3x – 4y + 2z = – 1, 2x + 3y + 5z = 7 and x + z = 2 (Delhi 2011 C)
Answer:
A -1 = \(\frac{1}{10}\left[\begin{array}{rrr}
-6 & 25 & -24 \\
-12 & 40 & -38 \\
10 & -40 & 40
\end{array}\right]\) and x = 3, y = 2, z = -1

Question 41.
If A = \(\left[\begin{array}{rrr}
8 & -4 & 1 \\
10 & 0 & 6 \\
8 & 1 & 6
\end{array}\right]\) then find A -1 and hence solve the following system of equations
8x – 4y + 2 = 5 10x + 6z = 4 and 8x + y + 6z = \(\frac{5}{2}\). (All India 2010C)
Answer:
A -1 = \(\frac{1}{10}\left[\begin{array}{rrr}
-6 & 25 & -24 \\
-12 & 40 & -38 \\
10 & -40 & 40
\end{array}\right]\) and x = 1, y = \(\frac{1}{2}\), z = -1

Question 42.
If A = \(\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{rrr}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right]\) then find AB. Use this to solve the system of equations
x – y = 3, 2x+ 3y + 4z = 17 and y + 2z = 7. (All India 2010C)
Answer:
AB = 6I and x = 2 y = -, z = 4

Question 43.
If A = \(\left[\begin{array}{rrr}
3 & 2 & 1 \\
4 & -1 & 2 \\
7 & 3 & -3
\end{array}\right]\), then find A. Hence solve the following system of equations 3x + 2y + z = 6 4x – y + 2z = 5 and 7x + 3y – 3z = 7. (Delhi 2010C)
Answer:
A -1 = \(\frac{1}{62}\left[\begin{array}{ccc}
-3 & 9 & 5 \\
26 & -16 & -2 \\
19 & 5 & -11
\end{array}\right]\) and x = 1, y = 1, z = 1

AI CONTENT END 2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="https://www.LearnCBSE.online/class-12-maths-important-questions-chapter-4/" dc:identifier="https://www.LearnCBSE.online/class-12-maths-important-questions-chapter-4/" dc:title="Determinants Class 12 Maths Important Questions Chapter 4" trackback:ping="https://www.LearnCBSE.online/class-12-maths-important-questions-chapter-4/trackback/" /> </rdf:RDF>

Filed Under: Important Questions

  • NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2023-2024
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions
  • Student Nutrition - How Does This Effect Studies
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams

LearnCBSE Online

Telegram Twitter Reddit Discord